Cho \(x,y\) là hai số dương tùy ý. Chứng minh rằng
\(x+y+\dfrac{1}{2x}+\dfrac{2}{y}\ge3\sqrt{2}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy ta có:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\) ; \(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\) ; \(y^2+z^2\ge2yz\) ; \(z^2+x^2\ge2zx\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(xy+yz+zx+x+y+z\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi x = y = z = 1
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{9}{3a}+\frac{4}{2b}+\frac{1}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}=\frac{36}{3a+2b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
Trước hết, ta chứng minh được \(\forall m,n,p\in R;x,y,z>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Thật vậy: \(\forall m,n\in R;x,y>0\)thì:
\(\frac{m^2}{x}+\frac{n^2}{y}\ge\frac{\left(m+n\right)^2}{x+y}\left(2\right)\)
\(\Leftrightarrow\frac{m^2y}{xy}+\frac{n^2x}{xy}\ge\frac{\left(m+n\right)^2}{x+y}\)
\(\Leftrightarrow\left(m^2y+n^2x\right)\left(x+y\right)\ge xy\left(m+n\right)^2\)
\(\Leftrightarrow m^2xy+m^2y^2+n^2x^2+n^2xy\ge xy\left(m^2+2mn+m^2\right)\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2\ge m^2xy+2mnxy+n^2xy\)
\(\Leftrightarrow m^2xy+n^2xy+m^2y^2+n^2x^2-m^2xy-2mnxy-n^2xy\ge0\)
\(\Leftrightarrow m^2y^2-2mnxy+n^2x^2\ge0\)
\(\Leftrightarrow\left(my-nx\right)^2\ge0\)(luôn đúng).
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}\)
Áp dụng bất dẳng thức (2), ta được:
\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n\right)^2}{x+y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\forall m,n,p\in R;x,y,z>0\)
Dấu bằng xảy ra \(\Leftrightarrow\frac{m}{x}=\frac{n}{y}=\frac{p}{z}\)
Theo đề bài, vì \(a,b,c>0\)nên áp dụng bất đẳng thức (1), ta được:
\(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}=\frac{3^2}{3a}+\frac{2^2}{2b}+\frac{1^2}{c}\ge\frac{\left(3+2+1\right)^2}{3a+2b+c}\)
\(\Leftrightarrow\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{6^2}{3a+2b+c}=\frac{36}{3a+2b+c}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\frac{3}{a}=\frac{2}{b}=\frac{1}{c}\Leftrightarrow6a=9b=18c\)
Vậy với \(a,b,c>0\)thì \(\frac{3}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{36}{3a+2b+c}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{x+2y}\)(1)
Từ GT x + 2y ≤ 3z => \(\frac{1}{x+2y}\ge\frac{1}{3z}\)<=> \(\frac{9}{x+2y}\ge\frac{3}{z}\)(2)
Từ (1) và (2) => \(\frac{1}{x}+\frac{2}{y}\ge\frac{9}{x+2y}\ge\frac{3}{z}\)=> \(\frac{1}{x}+\frac{2}{y}\ge\frac{3}{z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z=1
Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) \(\left(x,y,z>0\right)\)
Khi đó
\(VT=\frac{1}{\frac{1}{x^2}\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\frac{1}{y^2}\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\frac{1}{z^2}\left(\frac{1}{x}+\frac{1}{y}\right)}\) và \(xyz=1\)
\(=\frac{x^2}{\frac{y+z}{yz}}+\frac{y^2}{\frac{z+x}{zx}}+\frac{z^2}{\frac{x+y}{xy}}=\frac{x^2yz}{y+z}+\frac{y^2zx}{z+x}+\frac{z^2xy}{x+y}\)
\(=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+zx}+\frac{y^2}{yz+xy}+\frac{z^2}{zx+yz}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
đk: \(y+3\ge0\)
BĐT cần chứng minh tương đương
\(BPT\Leftrightarrow1-2y-y^2\le\left(y+3\right)^2=y^2+6y+9\)
\(\Leftrightarrow2y^2+8y+8\ge0\)
\(\Leftrightarrow2\left(y+2\right)^2\ge0\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(y+2=0\Rightarrow y=-2\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x+\frac{1}{2x}\ge2\sqrt{x\cdot\frac{1}{2x}}=2\sqrt{\frac{1}{2}}\)
\(y+\frac{2}{y}\ge2\sqrt{y\cdot\frac{2}{y}}=2\sqrt{2}\)
=> \(x+\frac{1}{2x}+y+\frac{2}{y}\ge2\sqrt{\frac{1}{2}}+2\sqrt{2}=3\sqrt{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\sqrt{2}\end{cases}}\)
ấp dụng bđt cosy cho 2 cặp số dương \(\left(x,\frac{1}{2x}\right)\)và \(\left(y,\frac{2}{y}\right)\)ta có
\(x+\frac{1}{2x}+y+\frac{2}{y}\ge2\sqrt{x.\frac{1}{2x}}+2\sqrt{y.\frac{2}{y}}=2.\sqrt{\frac{1}{2}}+2\sqrt{2}=3\sqrt{2}\)