Cho mình hỏi chút,
thì là cái đa thức này là mũ mấy vậy mọi người
Cần gấp pleaseeeee help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số quả trứng bán đi trong lần đầu là:
`336 xx 5 : 12 = 140` (quả trứng)
Số quả trứng còn lại sau lần đầu bán đi là;
`336 - 140 = 196` (quả trứng)
Số quả trứng bán đi trong lân thứ 2 là:
` 196 : 4 xx 3 = 147` (quả trứng)
Lần 3 bán số quả trứng là:
`196 - 147 = 49` (quả trứng)
Đáp số: `49` quả trứng
Sau lần đầu thì số quả trứng còn lại là:
\(336\times\left(1-\dfrac{5}{12}\right)=336\times\dfrac{7}{12}=196\left(quả\right)\)
Số quả trứng lần thứ ba bán được là:
\(196\times\left(1-\dfrac{3}{4}\right)=49\left(quả\right)\)
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(C=\left(\dfrac{1}{x^2+1}-\dfrac{x+1}{x^4-1}\right):\dfrac{x+1}{x^5+x^4-x-1}\)
\(=\dfrac{x^2-1-x-1}{\left(x^2+1\right)\left(x^2-1\right)}:\dfrac{x+1}{x^4\left(x+1\right)-\left(x+1\right)}\)
\(=\dfrac{x^2-x-2}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x^4-1\right)}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^4-1}{1}\)
=(x-2)(x+1)
b: Để C=0 thì (x-2)(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
c: \(C=\left(x-2\right)\left(x+1\right)=x^2-x-2\)
\(=x^2-x+\dfrac{1}{4}-\dfrac{9}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
Vì số sách toán 5 là trung bình cộng của số sách Toán 4 và Toán 3 nên số sách toán 3 và 4 gấp 2 lần số sách toán 5
Hay Số sách toán 5 bằng `1/3` tổng số sách bán đi
Số sách toán 5 bán được là :
`45:3= 15` (sách)
Tổng số sách toán 3 và 4 là :
`45 - 15 = 30` (sách)
Số tiền có được từ 15 sách toán 5 là :
`15xx 6000= 90 000` (đồng. )
Tổng số tiền mua sách toán 3 và 4 là:
`230 000- 90 000= 140 000` (đồng. )
Giả sử mỗi cuốn sách toán 4 cũng là 4000 đồng thì tổng số tiền bán sách toán 3 và 4 là:
`4000xx30 = 120000` (đồng. )
Số tiền giảm đi so với thực tế là;
`140000-120000= 20000` (đồng. )
Hiệu giá tiền của sách toán 4 và 3 là:
`5000 - 4000 = 1000` (đồng)
Số sách toán 4 bán được là:
`20000:1000= 20` (sách)
Số sách toán 3 bán được là:
`30-20 =10` (sách)
Đáp số: ...
3a=5b
=>\(a=\dfrac{5b}{3}\)
a-b=-6
=>\(\dfrac{5b}{3}-b=-6\)
=>\(\dfrac{2}{3}b=-6\)
=>\(b=-6:\dfrac{2}{3}=-6\cdot\dfrac{3}{2}=-9\)
=>\(b=\dfrac{5}{3}\cdot\left(-9\right)=-15\)
a: Vì ABCD là hình thang
nên \(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{2}{3}\)
b: Diện tích hình thang ABCD là:
\(S_{ABCD}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{15}{2}\left(cm^2\right)\)
\(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{2}{3}\)
=>\(S_{ADC}=1,5\cdot S_{ABC}\)
\(S_{ABC}+S_{ADC}=S_{ABCD}\)
=>\(1,5\cdot S_{ABC}+S_{ABC}=7,5\)
=>\(2,5\cdot S_{ABC}=7,5\)
=>\(S_{ABC}=3\left(cm^2\right)\)
a,b,c là các số thực đôi một phân biệt
=>\(a-b;b-c;a-c\) đều khác 0
\(a^3+b^3+c^3=3bac\)
=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
=>\(\left(a+b+c\right)\left[2a^2+2b^2+2c^2-2ab-2ac-2bc\right]=0\)
=>\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
=>\(\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\left(loại\right)\end{matrix}\right.\)
=>a+b+c=0
=>a+b=-c; a+c=-b; b+c=-a
\(P=\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}=\dfrac{-c}{c}\cdot\dfrac{-a}{a}\cdot\dfrac{-b}{b}=-1\)
a: Số học sinh trung bình là \(1200\cdot\dfrac{5}{8}=750\left(bạn\right)\)
Số học sinh khá là \(1200\cdot\dfrac{1}{3}=400\left(bạn\right)\)
Tổng số học sinh giỏi và yếu là 1200-750-400=50(bạn)
Số học sinh giỏi là 50:2=25(bạn)
Số học sinh yếu là 50-25=25(bạn)
b: Tỉ số phần trăm giữa số học sinh yếu và tổng số học sinh là:
\(\dfrac{25}{1200}=\dfrac{1}{48}\simeq2,08\%\)
`a^3 + b^3 + c^3 = 3abc`
`=> a^3 + b^3 + c^3 - 3abc = 0`
`=> (a+b)^3 - 3ab(a+b) + c^3 - 3abc = 0`
`=> ((a+b)^3 + c^3) - (3ab(a+b) + 3abc) = 0`
`=> (a+b+c) ((a+b)^2 - (a+b)c + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2) - 3ab(a+b+c) = 0`
`=> (a+b+c)(a^2 + 2ab + b^2 - ac - bc + c^2 - 3ab) = 0`
`=> (a+b+c)(a^2 - ab + b^2 - ac - bc + c^2) = 0`
Trường hợp 1:
`a+b+c = 0 (đpcm)`
Trường hợp 2:
`a^2 - ab + b^2 + ac + bc + c^2 = 0`
`<=> 2a^2 - 2ab + 2b^2 - 2bc +2c^2 - 2ca = 0`
`<=> a^2 - 2ab + b^2 + b^2 - 2bc +c^2 + c^2 - 2ac + a^2 = 0`
`<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0`
Do `{((a-b)^2 >=0),((b-c)^2 >=0),((c-a)^2 >=0):}`
`=> (a-b)^2 + (b-c)^2 + (c-a)^2 >= 0`
Dấu = có khi:
`{(a=b),(b=c),(c=a):}`
Hay `a=b=c (đpcm)`
Ta có :a^3+b^3+c^3=3abc⇒a^3+b^3+c^3-3abc=0
⇒(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
TH1: a+b+c=0
TH2:a^2+b^2+c^2-ab-ac-bc=0
⇒2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a-b)^2+(b-c)^2+(c-a)^2=0
⇒a=b=c