Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB= 5cm, BC= 6cm.
a)Chứng minh BH=HC
b) Tính độ dài BH, AH
c) Gọi G là trọng tâm của tam giác ABC. CMR A, G, H thẳng hàng
d) Chứng minh góc ABG= góc ACG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
a. xét tg ABH và tg ACH vuông tại H có
AB=AC (tg ABC cân tại A)
góc B = góc C (tg ABC cân tại A)
suy ra tg ABH = tg ACH (cạnh huyền-góc nhọn)
=> BH=HC (2 cạnh tương ứng)
b. ta có BC= BH + HC
mà BH=BC => BC/2=6/2=BH=HC=3(cm)
áp dụng định lí Pytago ta có
AB2= AH2 + BH2
=> AH2= AB2 - BH2 =52 - 32= 25 - 9 = 16
=> AH= căn 16 = 4(cm)
c. AH là 1 đường phân giác vì BH=HC
vì AH là 1 đoạn thẳng mà G thuộc AH (trọng tâm của tg là điểm mà 3 đường phân giác cắt nhau)
nên A,H,G thẳng hàng
d. xét tg GBH và tg GCH vuông tại H có
HB=HC (cm ở câu a)
GH là cạnh chung
vậy tg GBH = tg GCH (2 cạnh góc vuông)
=> góc GBH= góc GCH (2 góc tương ứng)
ta có:
góc B= góc GBH+ góc ABG
góc C= góc GCH+ góc ACG
mà góc B = góc C(tg ABC cân tại A)
góc GBH= góc GCH (tg GBH = tg GCH)
nên góc ABG= góc ACG