K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TN
0
NM
9
YN
11 tháng 2 2022
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}\)
\(=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)
\(=\frac{x+y+z}{2x+2y+2z}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}\)
\(=\frac{1}{2}\)
DD
Đoàn Đức Hà
Giáo viên
12 tháng 2 2022
TH1: \(x+y+z=0\)
Bài toán trở thành:
\(\frac{x}{-x-2}=\frac{y}{-y-3}=\frac{z}{-z+5}=0\)
\(\Leftrightarrow x=y=z=0\).
TH2: \(x+y+z\ne0\):
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z-2+x+z-3+x+y+5}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}=x+y+z\).
Ta có hệ:
\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z-2\\2y=x+z-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)
DT
8