Phân tích thành nhân tử:
\frac{1}{27}x^{3}-\frac{2}{3}x^{2}+4x-8271x3−32x2+4x−8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b, \(\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2=\left(x-y+x+y\right)^2=4x^2\)
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left[\left(x-y\right)^2+\left(x+y\right)^2\right]\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
a)
19^2=(20−1)^2=20^2−2.20.1+1^2=400−40+1=361
28^2=(30−2)^2=30^2−2.30.2+2^2=900−120+4=784
81^2=(80+1)^2=80^2+2.80.1+1^2=6400+160+1=6561
91^2=(90+1)^2=90^2+2.90.1+1^2=8100+180+1=8281
c) (xy^2+1)^2
d) (1/3-y^4)^2
e) (1/2a-2b^2)^2
f) (5-x)^2
1) =\(x^7-x+x^2+x\)+1
=\(x\left(x^6-1\right)+\left(x^2+x+1\right)\)
=\(x\left(x^3-1\right)\left(x^3+1\right)\)\(+\left(x^2+x+1\right)\)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=[(x^4+x)(x-1)+1](x^2+x+1)
=(x^5-x^4+x^2-x)(x^2+x+1)
Trả lời:
1, x7 + x2 + 1
= x7 + x2 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x7 + x6 + x5 ) - ( x6 + x5 + x4 ) + ( x4 + x3 + x2 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x5 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x2 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x5 - x4 + x2 - x + 1 )
b, x8 + x7 + 1
= x8 + x7 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x8 + x7 + x6 ) - ( x6 + x5 + x4 ) + ( x5 + x4 + x3 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x6 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x3 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
Sửa đề: \(x^2+2xy+y^2+2x+2y-15\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1-16\)
Đặt \(x+y=t\)
\(\Rightarrow t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2\)
\(=\left(t+1-4\right)\left(t+1+4\right)\)
\(=\left(t-3\right)\left(t+5\right)\)
\(=\left(x+y-3\right)\left(x+y+5\right)\)
\(1,\)
\(\left(x^2-x+2\right)^4-3x^2\left(x^2-x+2\right)^2+2x^4\)
Đặt: \(\left(x^2-x+2\right)^2=n\)
\(\left(x^2-x+2\right)^4-3x^2\left(x^2-x+2\right)^2+2x^4\)
\(=n^2-3x^2n+2x^4\)
\(=n\left(n-2x^2\right)-x^2\left(n-2x^2\right)\)
\(=\left(n-2x^2\right)\left(n-x^2\right)\)
Thay \(\left(x^2-x+2\right)^2\)ta có:
\(=[\left(x^2-x+2\right)^2-2x^2][\left(x^2-x+2\right)^2-x^2]\)
\(=[\left(x^2-x+2\right)^2-2x^2]\left(x^2-x+2-x\right)\left(x^2-x+2+x\right)\)
\(=[\left(x^2-x+2\right)^2-2x^2]\left(x^2-2x+2\right)\left(x^2+2\right)\)
\(2,\)
\(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4\)
\(=3\left(-x^2+2x+3\right)^4+x^2\left(-x^2+2x+3\right)^2-27x^2\left(-x^2+2x+3\right)^2-9x^4\)
\(=\left(-x^2+2x+3\right)^2[3\left(-x^2+2x+3\right)^2+x^2]-9x^2[\left(-x^2+2x+3\right)^2+x^2]\)
\(=[3\left(-x^2+2x+3\right)^2+x^2][\left(-x^2+2x+3\right)^2-9x^2]\)
\(x^2+2xy+y^2+2x+2y-15\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1-16\)
\(=\left(x+y+1\right)^2-4^2=\left(x+y-3\right)\left(x+y+5\right)\)
\(x^2+2xy+y^2+2x+2y-15\)
\(=x^2+2xy+y^2+2x+2y+1-16\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1-16\)
Đặt \(x+y=t\)
\(\Rightarrow t^2+2t+1-16\)
\(=\left(t+1\right)^2-4^2\)
\(=\left(t+1-4\right)\left(t+1+4\right)\)
\(=\left(t-3\right)\left(t+5\right)\)
\(=\left(x+y-3\right)\left(x+y+5\right)\)
phân tích đa thức thành nhân tử 4x^3+6x^2+4x+1
= 4x^3+6x^2+4x+1
= (2x+1)(2x^2+2x+1)
nha bạn chúc bạn học tốt nha
\(4x^3+6x^2+4x+1\)
\(=4x^3+4x^2+2x^2+2x+2x+1\)
\(=\left(4x^3+4x^2+2x\right)+\left(2x^2+2x+1\right)\)
\(=2x\left(2x^2+2x+1\right)+\left(2x^2+2x+1\right)\)
\(=\left(2x^2+2x+1\right)\left(2x+1\right)\)
271x3−32x2+4x−8
x - x + 4x - 8
= 4x - 8
= 4( x - 8)