Cho hai số tự nhiên a và b, với a > b và thỏa mãn: \(3\left(a+b\right)=5\left(a-b\right)\) . Tìm thương của a và b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:x^2+7x-8=0
x2 + 7x + -8 = 0
-8 + 7x + x2 = 0
-8 + 7x + x2 = 0
(-8 + -1x)(1 + -1x) = 0
=>-8 + -1x=0 hoặc 1 + -1x=0
=>x=1 hoặc -8
Muốn tính nghiệm của đa thức bậc hai, ta sẽ tìm cách biến đối nó thành tích của các biểu thức bậc 1 nhé. Ở đây ta có thể nhẩm ngay được 1 nghiệm của đa thức là 1, như vậy đa thức sẽ có thể tách được thành tích của biểu thức \(\left(x-1\right)\) và một biểu thức khác. Cô hướng dẫn cách tách như sau:
\(x^2+7x-8=0\Leftrightarrow x^2-x+8x-8=0\Leftrightarrow x\left(x-1\right)+8\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x=1\) hoặc \(x=-8\)
Chúc em học tốt :)
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=1-\frac{13}{n+3}\)
Để \(n^2+3n-13\) chia hết cho n+3 thì 13 phải chia hết cho n+3 hay n+3 là ước của 13
=> n+3={-13; -1; 1; 13} => n={-16; -4; -2; 10}
a) ta có
goc BAD+ goc DAC =90 (2 góc kề phụ)
goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)
goc DAC=goc HAD (AD lả p/g goc HAC)
==> góc BAD= goc ADB
-> tam giac BAD cân tại B
b) xet tam giac ADH và tam giac ADE ta có
AD= AD ( cạnh chung)
goc HAD = goc DAC ( AD là p/g goc HAC)
goc AID = góc AIE (=90)
--> tam giac ADH= tam giac ADE (g-c-g)
-< AH= AE ( 2 canh tương ứng)
Xét tam giac AHD và tam giac AED ta có
AD=AD ( cạnh chung)
AH=AE (cmt)
goc DAH= goc DAE ( AD là p/g HAC)
-> tam giac AHD= tam giac AED ( c-g-c)
-> goc AHD= goc AED ( 2 góc tương ứng
mà góc AHD = 90 ( AH vuông góc BC)
nên AED =90
-> DE vuông góc AC
c) Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( dly pi ta go)
152=122+BH2
BH2 =152-122=81
BH=9
ta có BA=BD ( tam giác ABD cân tại B)
BA=15 cm (gt)
-> BD=15
mà BH+HD=BD ( H thuộc BD)
nên 9+HD=15
HD=15-9=6
Xét tam giác ADH vuông tại H ta có
AD2=AH2+HD2 ( định lý pitago)
AD2=122+62=180
-> AD=\(\sqrt{180}=6\sqrt{5}\)
a) Vì BD = BA nên ΔΔBAD cân tại B
=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm
b) Ta có: góc BAD + g DAC = 90o
=> g DAC = 90o - g BAD (1)
Áp dụng tc tam giác vuông ta có:
g HAD + g BDA = 90o
=> g HAD = 90o - g BDA (2)
mà góc BAD = g BDA (câu a)
=> gDAC = g HAD
=> AD là tia pg của g HAC.
c) Áp dụng tc tổng 3 góc trong 1 tg ta có:
g AHD + g HDA + g HAD = 180o
=> 90o + g HDA + g HAD = 180o
=> g HDA + g HAD = 90o (3)
g DAC + g DKA + g ADK = 180o
=> g DAC + 90o + g ADK = 180o
=> g DAC + g ADK = 90o (4)
mà gDAC = g HAD hay gDAK = gHAD
Xét tgHAD và tgKAD có:
g HDA = g ADK (c/m trên)
AD chung
g HAD = g DAK (c/m trên)
=> tgHAD = tgKAD (g.c.g)
=> AH = AK (2 cạnh t/ư)
ta có: 3a+3b=5a-5b
3a+5a=3b-5b
8a=-4b
8:-4=a/b
=> a/b = -2
hên sui hà
3(a+b)=5(a-b)
3a + 3b = 5a - 5b
3a + 3b + 5b = 5a
3b + 5b = 5a - 3a
8b = 2a
4b = a (1)
Từ (1) ta có:
a : b = 4
=> thương của a và b bằng 4