Cho x2+y2=1
Hãy tính giá trị của biểu thức M=2x4+3x2y2+y4+y2
Xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABD và tam giác ACD có:
AB = AC (gt)
góc A1 = góc A2 (AD là p/giác)
AD chung
=> tam giác ABD = tam giác ACD (c.g.c)
t i c k nhoa!!!
Bạn tự vẽ hình nha!!!
a. Sorry!!!
b.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> BD là đường trung trực của AE
c.
Xét tam giác AFD và tam giác ECD có:
DEC = DAF ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác AFD = Tam giác ECD (g.c.g)
=> DF = DC (2 cạnh tương ứng)
d.
Tam giác EDC vuông tại E
=> DC > DE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mad DE = DA (tam giác ABD = tam giác EBD)
=> DC > DA
Bạn tự vẽ hình nha!!!
a.
Ta có:
AB > AC (gt)
=> HB > HC (quan hệ giữa đường xiên và hình chiếu)
b.
Tam giác ABC có:
AB > AC (gt)
=> ACB > ABC (quan hệ giữa góc và cạnh đối diện trong tam giác)
c.
Tam giác ABH vuông tại H có: BAH + ABH = 90 => BAH = 90 - ABH
Tam giác ACH vuông tại H có: CAH + ACH = 90 => CAH = 90 - ACH
mà ACH > ABH (theo câu b)
=> BAH > CAH
P= 2x4 + 3x2y2 + y4 + y2 với x2 + y2 = 1
= 2x2 . x2 + 2x2y2 + x2y2 + y2.y2 + y2
= 2x2.(x2 + y2) + y2.(x2 + y2) + y2
= 2x2 . 1 + y2 . 1 + y2
= 2x2 + y2 + y2
= 2x2 + 2y2
= 2.(x2 + y2) = 2 . 1 = 2
t i c k nhé!!
Ta tách 3X2Y2= 2X2Y2+ X2Y2 để tạo nhân tử chung
M= 2X4+ 2X2Y2+X2Y2+Y4+Y2= 2X2 .(X2+Y2) + Y2(X2+Y2+1)
Thay X2+Y2=1 vào ta được M = 2X2.1 + Y2. (1+1)= 2X2+ 2Y2= 2(X2+Y2) = 2.1 =2
vẬY M =2