Cho tam giác ABC cân tại A đường cao AH biết AB=5cm BC=6cm
A ) tính độ dài của các đoạn thẳng AH,BH
Gọi G là trọng tâm của tam giác ABC chứng minh rằng ba điểm A ,G ,H thẳng hàng
Chứng minh ABC = ACG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác nhọn có AB<AC;AH vuông góc với BC( H thuộc BC )
a) So sánh HB với CH; AB với AH. So sánh BH với AB+AC với BC.
b) Kẻ BC vuông góc với AC ( K thuộc AC). Gọi I là giao điểm của AH và BK. Chứng minh CI vuông góc với AB
a/
ta có:
g(x)=2x+3=0
2x=-3 => x= -1.5
nghiệm là -1.5
b/ g(x)=x^2+2x+2
=x^2+x+x+1+1
=x(x+1)+(x+1)+1
=(x+1)^2+1 >1 => vô nghiệm
P= 2x4 + 3x2y2 + y4 + y2 với x2 + y2 = 1
= 2x2 . x2 + 2x2y2 + x2y2 + y2.y2 + y2
= 2x2.(x2 + y2) + y2.(x2 + y2) + y2
= 2x2 . 1 + y2 . 1 + y2
= 2x2 + y2 + y2
= 2x2 + 2y2
= 2.(x2 + y2) = 2 . 1 = 2
t i c k nhé!!
Ta tách 3X2Y2= 2X2Y2+ X2Y2 để tạo nhân tử chung
M= 2X4+ 2X2Y2+X2Y2+Y4+Y2= 2X2 .(X2+Y2) + Y2(X2+Y2+1)
Thay X2+Y2=1 vào ta được M = 2X2.1 + Y2. (1+1)= 2X2+ 2Y2= 2(X2+Y2) = 2.1 =2
vẬY M =2
xét tam giác ABD và tam giác ACD có:
AB = AC (gt)
góc A1 = góc A2 (AD là p/giác)
AD chung
=> tam giác ABD = tam giác ACD (c.g.c)
t i c k nhoa!!!
a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC
\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)
\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)
\(\Rightarrow\) AH = 4(cm)
b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH
\(\Rightarrow\) A,G,H thẳng hàng