Cho x, y, z khác 0 và x - y - z = 0. Tính giá trị của biểu thức: B = (1 - z/x)(1 - x/y)(1 + y/x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giac ABM và tam giác NBM ta có
BM =BM ( cạnh chung)
góc ABM = góc NBM ( BM là tia phân giác ABC)
-> tam giac ABM = tam giác NBM ( ch-gn)
b) ta có
BA=BN ( tam giác ABM=tam giác NBM)
MA=MN ( tam giac ABM= tam giác NBM)
-> BM la đường trung trực của AN
c) Xét tam giac AMI và tam giác NMC ta có
AM=BMN( tam giac ABM= tam giac NBM)
góc MAI= góc MNC (=90)
góc AMI= góc NMC ( 2 góc đối đỉnh)
-> tam giac AMI= tam giac NMC ( g-c-g)
-> MI= MC ( 2 cạnh tương ứng)
d) từ điểm M đến đường thẳng NC ta có
MN là đường vuông góc (MN vuông góc BC )
MC là đường xiên
-> MN < MC (quan hệ đường xiên đường vuông góc)
mà AM= MN ( tam giac ABM= tam giac NBM)
nên AM<MC
->
a)
Q(x) = x4 +0x3 + 3x2 + 1
b)
Q(3)= 34 + 0 + 3.32 + 1
Q(3)= 81 +27 + 1
Q(3)=109
Q(-3)=(-3)4 + 3.(-3)2 + 1
Q(-3)=81 +27 + 1
Q(--3)=109
Vì x^2 \(\ge\) 0 (với mọi x) , (x-3)^2 \(\ge\) 0 (với mọi x)
\(\Rightarrow\) x^2 + (x-3)^2 \(\ge\) 0 (với mọi x)
\(\Rightarrow\) Đa thức này ko có nghiệm
mk nhanh nhất nha
chúc bạn học tốt
de ma. Ban xem lai may bai hoc ve TBC lop 7 di. Lam tt nhu ho ik.