Số phần tử của tập hợp các số x thỏa mãn l x+2,5 l + l 3,5-x l = 0 là {.....}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a)
ta có tam giác ABC vuông tại A.
Áp dụng định lí py-ta-go, ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC=100=10\left(cm\right)\)
b)
ta có: 10cm>8cm>6cm
=> BC>AC>AB
=> A>B>C
c)
kẻ BN
ta có: MA<AB
=>MN<BN(1)
ta có: AC>AN
=> BC>BN(2)
từ (1)(2), ta có:
MN<BN
BN<BC
=> MN<BC
Tìm m,n nguyên dương sao cho \(\left(\frac{1}{2}\right)^n-\left(\frac{1}{2}\right)^m=\frac{1}{512}\)


phải, vì trong tam giác cân đường cao ứng với cạnh đáy dồng thời là đường trung tuyến, phân giác và trung trực

Từ \(x-y=1\Rightarrow x=y+1\)
\(\Rightarrow xy+1=\left(y+1\right).y+1=y^2+y+1=y^2+\frac{1}{2}y+\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=y\left(y+\frac{1}{2}\right)+\frac{1}{2}\left(y+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(y+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)+\frac{3}{4}=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(y+\frac{1}{2}\right)^2\ge0\) với mọi y E R
=>\(\left(y+\frac{1}{2}\right)^2+4\ge4>0\) với mọi y E R
=>y2+y+1 vô nghiệm
=>xy+1 vô nghiệm (đpcm)
Tổng 2 số không âm bằng 0 khi và chỉ khi
x+2,5=0 và 3,5-x=0
<=> x=-2,5 và x=3,5 (vô lí)
Vậy không có phần tử x nào thỏa mãn điều kiện trên.