cho x-y=2 Tìm MinP=x2+y2+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 24x3 + 18x2 + 36x + 27
= ( 24x3 + 18x2 ) + ( 36x + 27 )
= 2x2( 12x + 9 ) + 3( 12x + 9 )
= ( 12x + 9 )( 2x2 + 3 )
Vậy mỗi học sinh trồng được ( 24x3 + 18x2 + 36x + 27 ) : ( 12x + 9 ) = ( 12x + 9 )( 2x2 + 3 ) : ( 12x + 9 ) = 2x2 + 3 cây [ x nguyên dương ]
\(a)\)\(\left(x+1\right)\left(x+3\right)-x\left(x-1\right)=8\)
\(\Leftrightarrow x^2+4x+3-x^2+x=8\)
\(\Leftrightarrow5x=5\)
\(\Leftrightarrow x=1\)
Vậy x = 1.
\(b)\)\(9x^2=1-\left(3x+1\right)\left(2x-9\right)\)
\(\Leftrightarrow\left(1-9x^2\right)-\left(3x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(1-3x\right)-\left(3x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(1-3x+9-2x\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\10-5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
Vậy\(x=-\frac{1}{3}\)hoặc\(x=2\)
Dumflinz
\(a)\)\(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(b)\)\(x^2+4y^2-25+4xy\)
\(=\left(x^2+4xy+4y^2\right)-25\)
\(=\left(x+2y\right)^2-25\)
\(=\left(x+2y-5\right)\left(x+2y+5\right)\)
Dumflinz
Có:\(A=\frac{1}{x^2+4x+5}\)
\(=\frac{1}{\left(x^2+4x+4\right)+1}\)
\(=\frac{1}{\left(x+2\right)^2+1}\)
Vì\(\left(x+2\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+2\right)^2+1\ge1\forall x\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)^2+1}\le1\forall x\)
\(\Leftrightarrow A\le1\forall x\)
Dấu "=" xảy ra <=> x + 2 = 0
<=> x = -2
Vậy A đạt GTLN bằng 1 tại x = -2.
Dumflinz
\(\frac{7}{4}-y.\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
\(\Leftrightarrow\frac{5}{6}.y=\frac{7}{4}-\frac{1}{2}-\frac{1}{3}\)
\(\Leftrightarrow\frac{5}{6}.y=\frac{11}{12}\)
\(\Leftrightarrow y=\frac{11}{12}:\frac{5}{6}\)
\(\Leftrightarrow y=\frac{11}{12}.\frac{6}{5}\)
\(\Leftrightarrow y=\frac{11}{10}\)
Vậy\(y=\frac{11}{10}\)
Dumflinz
Có:\(x^4+64y^4\)
\(=\left(x^4+16x^2y^2+64y^4\right)-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+4xy+8y^2\right)\left(x^2-4xy+8y^2\right)\)
Linz
= 64y4 + 32xy3 + 8y2x2 - 32xy3 -16x2y2 - 4x3y + 8x2y2 +4x3y +x4
= 8y2 ( 8y2 + 4xy + x2 ) - 4xy ( 8y2 + 4xy + x2 ) + x2 ( 8y2 + 4xy + x2 )
= ( 8y2 - 4xy + x2 ) ( 8y2 + 4xy + x2 )
\(x-y=2\Leftrightarrow x=y+2\)
\(P=x^2+y^2+2020=\left(y+2\right)^2+y^2+2020=2y^2+4y+2024=2\left(y+1\right)^2+2022\ge2022\)
Dấu \(=\)khi \(y+1=0\Leftrightarrow y=-1\)