K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(\frac{3}{x}+\frac{9}{y}\ge2\sqrt{\frac{3}{x}\cdot\frac{9}{y}}=2\sqrt{\frac{27}{3}}=6\)(1)

\(3x+y\ge2\sqrt{3xy}=6\)=> \(\frac{26}{3x+y}\le\frac{13}{3}\)<=> \(-\frac{26}{3x+y}\ge-\frac{13}{3}\)(2)

Từ (1) và (2) => \(\frac{3}{x}+\frac{9}{y}-\frac{26}{3x+y}\ge6-\frac{13}{3}=\frac{5}{3}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\frac{3}{x}=\frac{9}{y}\\3x=y\\xy=3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Vậy GTNN của P = 5/3

10 tháng 2 2022

- Theo giả thiết  a,b>0a,b>0  nên áp dụng bất đẳng thức Cô si ta được

                a^4+b^2\ge2a^2b\Rightarrow a^4+2ab^2+b^2\ge2a^2b+2ab^2a4+b22a2ba4+2ab2+b22a2b+2ab2

                                                 \Rightarrow a^4+2ab^2+b^2\ge2ab\left(a+b\right)a4+2ab2+b22ab(a+b)

                                                 \Rightarrow\frac{1}{a^4+2ab^2+b^2}\le\frac{1}{2ab\left(a+b\right)}a4+2ab2+b212ab(a+b)1,  (đẳng thức xảy ra khi và chỉ khi a=ba=b)

- Tương tự                                   \frac{1}{a^2+2a^2b+b^4}\le\frac{1}{2ab\left(a+b\right)}a2+2a2b+b412ab(a+b)1    ,    (đẳng thức xảy ra khi và chỉ khi  a=ba=b)

- Từ đó      Q\le\frac{1}{ab\left(a+b\right)}Qab(a+b)1

- Giả thiết  \left(a+b\right)\left(a+b-1\right)=a^2+b^2(a+b)(a+b1)=a2+b2 tương đương với a+b=2ab\Leftrightarrow ab=\frac{a+b}{2}a+b=2abab=2a+b(*)

- Do đó      Q\le\frac{2}{\left(a+b\right)^2}Q(a+b)22

  - Mà      ab\le\frac{\left(a+b\right)^2}{4}ab4(a+b)2    nên   \frac{a+b}{2}\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge22a+b4(a+b)2a+b2  (do giả thiết  a,b>0a,b>0 ).

- Vì vậy   Q\le\frac{2}{2^2}Q222 

GTNN  là  \frac{1}{2}21 đạt khi và chỉ khi \left\{{}\begin{matrix}a=b\\a+b=2\end{matrix}\right.{a=ba+b=2\Leftrightarrow a=b=1a=b=1

 
 
10 tháng 2 2022

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)