a) \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)\)\(+8y^3\)
b)(x-2)(\(x^2\)+2x+4)-\(\left(x-1\right)^3\)+7
c)x(x+2)(2-x)+(x+3)(\(x^2\)-3x+9) -GIÚP MIK VS, MIK TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{1}=2\)
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\a+b=4\end{cases}}\)
vậy \(MIN=2\)
Ta có: a/b+b/a=\(\frac{a^2+b^2}{ba}\)= \(\frac{\left(a+b\right)^2}{ba}-2\)=16/ab-2
hay để a/b và b/a nhỏ nhất thì ba lớn nhất và khác 0 (rồi giờ bn tìm ba thôi, đừng bấm sai vì mình chưa ra kq nhé)
Giải
1/(2.4) + 1/(4.6) + … + 1/[(2x – 2).2x] = 1/8
=> 2/(2.4) + 2/(4.6) + ...+ 2/[(2x - 2).2x] = 2/8
=>1-1/4+1/4-1/6+...+1/(2x-2) - 1/2x = 2/8
=>1 - 1/2x = 2/8
=>1/2x = 1 - 2/8
=>1/2x = 6/8 = 3/4
=>1.4 = 2.x.3
=>4 = 6x
=> x thuộc rỗng
Vậy x thuộc rỗng
Bài 3B :
a, \(\left(x+4\right)^2-\left(2x+1\right)^2=3\left(x-3\right)\)
\(\Leftrightarrow\left(x+4-2x-1\right)\left(x+4+2x+1\right)=3\left(x-3\right)\)
\(\Leftrightarrow-\left(x-3\right)\left(3x+5\right)=3\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(-5-3x\right)-3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-8-3x\right)=0\Leftrightarrow x=-\frac{8}{3};x=3\)
b, \(x^3-8=2x^2-4x\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4>0\right)=0\Leftrightarrow x=2\)
c, \(x^3-6x^2+8x=0\Leftrightarrow x\left(x^2-6x+8\right)=0\)
\(\Leftrightarrow x\left(x^2-6x+9-1\right)=0\Leftrightarrow x\left[\left(x-3\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x-2\right)=0\Leftrightarrow x=0;x=2;x=4\)
a, \(x^2-6x+9=\left(x-3\right)^2\)
b, \(x^2-12x+36=\left(x-4\right)^2\)
c, \(9x^2-25=\left(3x-5\right)\left(3x+5\right)\)
d, \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
e, \(x^4-8x^2+16=\left(x^2-4\right)^2=\left[\left(x-2\right)\left(x+2\right)\right]^2\)
f, \(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
g, \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=9\left(1-x\right)\left(x+1\right)\)
h, \(\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2\)
\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)
a, \(x^2-6x+9=4< =>\left(x-3\right)^2=4< =>\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b,\(x^2\left(x-3\right)-4\left(x-3\right)=0< =>\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(< =>\orbr{\begin{cases}x=2\\x=-2\end{cases}orx=3}\)
c nhường mấy bn khácccc
a) x^2-6x+9=4.
x=1, x=5
b) x^2(x-3)-(4X-12)=0
x=-2, x=2, x=3
c) (2x+3)^2-4(x+2)^2=12
x=-19/4
(x+2)(x+3)(x+4)(x+5)=24
x=-6,
x=-1;
x = -(căn bậc hai(3)căn bậc hai(5)i+7)/2
;x = (căn bậc hai(3)căn bậc hai(5)i-7)/2;
nha bạn chúc bạn học tốt nha
(x + 2)(x + 3)(x + 4)(x + 5) = 24
<=> [(x + 2)(x + 5][(x + 3)(x + 4] = 24
<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0
<=> (x2 + 7x + 11 - 1)(x2 + 7x + 11 + 1) - 24 = 0
<=> (x2 + 7x + 11)2 - 25 = 0
<=> (x2 + 7x + 16)(x2 + 7x + 6) = 0
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[\left(x+\frac{7}{2}\right)^2+\frac{15}{4}\right]=0\)
<=> (x + 1)(x + 6) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}}\)
Vậy \(x\in\left\{-1;-6\right\}\)
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
\(^{ }\)