Cho các số thực dương x,y thỏa mãn x+2y+3xy=3 . Biết rằng biểu thức P= x+y đạt giá trị nhỏ nhất bằng \(\frac{a\sqrt{b}-c}{3}\)
trong đó a,b,c là các số nguyên dương . Gọi S là tập hợp các giá trị của M= a+b+c , tính tổng bình phương các phần tử của S
Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\) ( vì x > 0 )
Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\)
Chứng minh được : \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ...