tính diện tích của tam giác abs có góc a = 90 độ , ab = 4cm ac= 5cm,
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a , b , c là độ dài ba cạnh của tam giác , thế thì p = a + b + c ( và p - a ; p - b ; p - c > 0 )
Theo công thức Hêrông :
\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
Ta có : \(S^2\le p.[\frac{\left(p-a\right)+\left(p-b\right)+\left(p-c\right)}{3}\)\(]^3\)\(=\frac{p^4}{27}\)
Để ý rằng dấu '' = '' chỉ xảy ra khi :
\(p-a=p-b=p-c\Leftrightarrow\Delta ABC\)đều
a) ĐKXĐ : \(\hept{\begin{cases}x-3\ne0\\x^2-9\ne0\\x+3\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne3\\x\ne\pm3\\x\ne-3\end{cases}}\Rightarrow x\ne\pm3\)
b) A = \(\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}=\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)
Khi x = 3 => Không thỏa mãn ĐKXĐ
=> Không tồn tại A khi x = 3
a, Điều kiện xác định là :
\(\hept{\begin{cases}x-3\ne0\\x^2-9\ne0\\x+3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne3\\\left(x-3\right)\left(x+3\right)\ne\\x\ne-3\end{cases}}0\Rightarrow x\ne\pm3}\)
Vậy \(x\ne\pm3\)
b, \(A=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)
\(=\frac{3}{x-3}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\)
\(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)
Thay x = 3 ( ktm đkxđ )
Ko tồn tại x
Ta có đánh giá quen thuộc: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=3\left(x+y+z\right)\)(Do xyz = 1)\(\Rightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
Như vậy, ta cần chứng minh: \(\frac{3}{\left(xy+yz+zx\right)^2}+\frac{1}{3}\ge\frac{2}{xy+yz+zx}\)
Đặt \(t=\frac{1}{xy+yz+zx}\)thì bất đẳng thức trở thành \(3t^2+\frac{1}{3}\ge2t\Leftrightarrow9t^2+1\ge6t\Leftrightarrow\left(3t-1\right)^2\ge0\)*đúng*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(\hept{\begin{cases}t=\frac{1}{xy+yz+zx}=\frac{1}{3}\\x=y=z>0,xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
P = \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}-3=y.\frac{y}{x+y}+z.\frac{z}{y+z}+x.\frac{x}{z+x}-3\)
\(=y.\left(\frac{y}{x+y}-1+1\right)+z\left(\frac{z}{y+z}-1+1\right)+x\left(\frac{x}{z+x}-1+1\right)-3\)
\(=y\left(\frac{-x}{x+y}+1\right)+z\left(\frac{-y}{y+z}+1\right)+x\left(\frac{-z}{x+z}+1\right)-3\)
\(=x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{xz}{z+x}\right)-3\)
Lại có \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2017\)
\(\Rightarrow x.\frac{x}{x+y}+y.\frac{y}{y+z}+z.\frac{z}{z+x}=2017\)
=> \(x\left(\frac{x}{x+y}-1+1\right)+y\left(\frac{y}{y+z}-1+1\right)+z\left(\frac{z}{z+x}-1+1\right)=2017\)
=> \(x\left(\frac{-y}{x+y}+1\right)+y\left(\frac{-z}{y+z}+1\right)+z\left(\frac{-x}{x+z}+1\right)=2017\)
=> \(x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\right)=2017\)
Khi đó P = 2017 - 3 = 2014
Diện tích tam giác abc là \(S_{abc}=\frac{ab.ac}{2}=\frac{4.5}{2}=10cm^2\)