K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\frac{a}{c}=\frac{b}{d}=k\) a = ck ; b = dk

Ta có :

\(\frac{a+b}{a-b}=\frac{ck+dk}{ck-dk}=\frac{k.\left(c+d\right)}{k.\left(c-d\right)}=\frac{c+d}{c-d}\) 

Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

23 tháng 9 2015

Đinh Tuấn Việt bạn học giỏi thật á, nãy giờ thấy nhiều bài đăng lên đều có bạn trả lời hết.
 

23 tháng 9 2015

Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)

Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)

=> \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(Đpcm)

NM
16 tháng 12 2020

ta có \(\hept{\begin{cases}\frac{x}{8}=\frac{y}{7}=\frac{z}{21}\\-3x+10y-2z=236\end{cases}}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{x}{8}=\frac{y}{7}=\frac{z}{21}=\frac{-3x+10y-2z}{-3.8+10.7-2.21}=\frac{236}{4}=29\)

vậy ta tìm được \(\hept{\begin{cases}x=8.29=232\\y=7.29=203\\z=21.29=609\end{cases}}\)