Tính giá trị của biểu thức một cách hợp lí: a= 3/5 + 3/20 + 3/44 + 3/77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em đây là toán nâng cao chuyên đề phân số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải bằng phương pháp giải ngược như sau:
Giải:
Phân số chỉ 10 tấn thóc là:
1 - \(\frac49\) = \(\frac59\)(số thóc còn lại)
Số thóc còn lại là:
10 : \(\frac59\) = 18 (tấn)
18 tấn ứng với phân số là:
1 - \(\frac25\) = \(\frac35\) (tổng số thóc)
Tổng số thóc cả ba đám ruộng là:
18 : \(\frac35\) = 30 (tấn)
Đáp số: 30 tấn.

Diện tích hình tròn tâm O là:5×5×3,14=78,5 (dm2)
Diện tích phần tô đậm là:78,5×60:100=47,1(dm2)
Diện tích hình tam giác DEF là:78,5-47,1=31,4(dm2)

Giải:
Một tuần có 7 ngày, vì tối thứ bảy An nghỉ đi dự sinh nhật bạn nên số buổi tối An học bài trong tuần trước là:
7 - 1 = 6 (buổi)
Các buổi tối tuần trước, thời gian An học bài là:
\(\frac32\) giờ x 6 = 9 (giờ)
Đáp số: 9 giờ

- \(M\) và \(K\) là các trung điểm của các cạnh \(B C\) và \(A D\) của tứ giác \(A B C D\), do đó, ta có:
\(B M = M C \text{v} \overset{ˋ}{\text{a}} A K = K D\) - \(A M\) và \(B K\) cắt nhau tại \(H\).
- \(D M\) và \(C K\) cắt nhau tại \(L\).
Ta biết rằng diện tích của một tam giác có thể tính theo công thức:
\(S = \frac{1}{2} \times độ\&\text{nbsp};\text{d} \overset{ˋ}{\text{a}} \text{i}\&\text{nbsp};đ \overset{ˊ}{\text{a}} \text{y} \times \text{chi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{cao} .\)
Khi các đường chéo cắt nhau, ta có thể tính diện tích của các tam giác con trong tứ giác thông qua các đoạn thẳng cắt nhau.
Diện tích của các tam giác trong tứ giác:
- Diện tích của tam giác \(A B H\) là:
\(S_{A B H} = \frac{1}{2} \times A B \times h_{A B H} ,\)
trong đó \(h_{A B H}\) là chiều cao từ \(H\) xuống đáy \(A B\). - Diện tích của tam giác \(C D L\) là:
\(S_{C D L} = \frac{1}{2} \times C D \times h_{C D L} ,\)
trong đó \(h_{C D L}\) là chiều cao từ \(L\) xuống đáy \(C D\).
Tổng diện tích của tứ giác \(H K L M\) có thể được chia thành diện tích của các tam giác nhỏ:
\(S_{H K L M} = S_{A B H} + S_{C D L} .\)Do đó, ta đã chứng minh rằng diện tích của tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\), như yêu cầu.
Kết luận:
Diện tích tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\) và \(C D L\).

A=(3/5+3/20)+(3/44+3/77). = ( 12/20+ 3/20 ) + (21/4.11.7+12/4.11.7). =15/20+33/4.11.7. =3/4+3/28. = 6/7
\(a=\frac35+\frac{3}{20}+\frac{3}{44}+\frac{3}{77}\)
\(a=\frac15\times3+\frac15\times\frac34+\frac{1}{11}\times\frac34+\frac{1}{11}\times\frac37\)
\(a=\frac15\times\left(3+\frac34\right)+\frac{1}{11}\times\left(\frac34+\frac37\right)\)
\(a=\frac15\times\frac{15}{4}+\frac{1}{11}\times\frac{33}{28}\)
\(a=\frac34+\frac{3}{28}\)
\(a=\frac67\)