K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 1 2021

A B C H I M N K

do từ câu b ta có MHNK là hình vuông từ đó ta có 

MN là trung trực của KH (1)

mà ta có hai tam giác vuông IKB và IHB nên ta có \(PH=PK=\frac{1}{2}BI\)( đường trung tuyến ứng với cạnh huyền)

Do PH=PK nên P thuộc đường trung trực của KH (2)

từ (1) và (2) ta có P thuộc MN

chứng minh tương tự ta có 

Q thuộc MN

do đó M,N,P,Q thẳng hàng

13 tháng 11 2021

alodgdhgjkhukljhkljyutfruftyhf

8 tháng 1 2021

Ta có :

\(\frac{1}{x}\)\(+\frac{1}{y}\)\(+\frac{1}{z}\)\(=0\)

\(\rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\rightarrow xy+yz+zx=0\)

\(\rightarrow\hept{\begin{cases}xy=-z\left(x+y\right)\\yz=-x\left(y+z\right)\\zx=-y\left(z+x\right)\end{cases}}\)

Ta được :

\(A=\frac{yz}{x^2}\)\(+\frac{zx}{y^2}\)\(+\frac{xy}{z^2}\)

\(\rightarrow A=-\frac{x\left(y+z\right)}{x^2}\)\(-\frac{y\left(z+x\right)}{y^2}\)\(-\frac{z\left(x+y\right)}{z^2}\)

\(\rightarrow A=-\frac{y}{x}\)\(-\frac{z}{x}\)\(-\frac{z}{y}\)\(-\frac{x}{y}\)\(-\frac{y}{z}\)

\(\rightarrow A=-x\left(\frac{1}{y}+\frac{1}{z}\right)-y\left(\frac{1}{z}+\frac{1}{x}\right)-z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\rightarrow A=-x.\left(-\frac{1}{x}\right)-y.\left(-\frac{1}{y}\right)-z.\left(-\frac{1}{z}\right)\)

\(\rightarrow A=1+1+1=3\)

\(\rightarrow A=3\)

8 tháng 1 2021

Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\left(\text{Vì }\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\right)\)

Khi đó A = \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)

\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)