Cho a,b là 2 số thực bất kì, CM ít nhất 1 trong 2 PT ẩn x sau vô nghiệm:
\(x^2+2ax+2a^2-b^2+1=0\)
\(x^2+2bx+3b^2-ab=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}=\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{\left(\sqrt{k}-\sqrt{k-1}\right)\sqrt{k}+\sqrt{k-1}}\)
\(=\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-\left(k-1\right)}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là a, b ( m ) ( \(0< a,b< 110\) )
Theo bài, ta có hệ phương trình: \(\hept{\begin{cases}a-b=17\\ab=110\end{cases}}\)
Đặt \(c=-b\)\(\Rightarrow\hept{\begin{cases}a+c=17\\a.c=-110\end{cases}}\)
\(\Rightarrow\)a và c là nghiệm của của phương trình: \(x^2-17x-110=0\)
\(\Delta=\left(-17\right)^2-4.1.\left(-110\right)=729\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{729}=27\)
\(\Rightarrow x_1=\frac{-\left(-17\right)+27}{2}=\frac{17+27}{2}=\frac{44}{2}=22\)
\(x_2=\frac{-\left(-17\right)-27}{2}=\frac{17-27}{2}=\frac{-10}{2}=-5\)
\(\Rightarrow a=x_1=22\); \(c=x_2=-5\)
mà \(-b=c\)\(\Rightarrow b=-c=-\left(-5\right)=5\)
Vậy chiều dài là 22m, chiều rộng là 5m