số phần tử của tập hợp các số x thoải mãn: |x-2.5| + |3.5-x| = 0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T
2
TN
0
BQ
1
TN
1
HT
28 tháng 7 2021
B = | x-1| + |x-2| + |x-3| + |x-5|
Ta có :
B = |x-1| + |x-2| + |3-x| + |5-x|
B = (|x-1|+|5-x|) + (|x-2| + |3-x| ) \(\ge\) |x-1+5-x| + | x-2+3-x | = |4| + |1| = 5
Dấu ''='' xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(5-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le5\\2\le x\le3\end{cases}}\Leftrightarrow2\le x\le3\)
Vậy MinB = 5 <=>\(2\le x\le3\)
HT
0