Toán vui:
Tính: \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\ne1,b\ne1,c\ne1\)\(\Rightarrow a-1\ne0,b-1\ne0,c-1\ne0\)
Ta có : \(B=\frac{\left(a-1\right)^2}{\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^2}{\left(c-1\right)\left(a-1\right)}+\frac{\left(c-1\right)^2}{\left(a-1\right)\left(b-1\right)}\)
\(=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(b-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}+\frac{\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
\(=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\left(1\right)\)
Lại có : \(\left(a-1\right)+\left(b-1\right)+\left(c-1\right)=\left(a+b+c\right)-3=3-3=0\)
Ta chứng minh tính chất sau : Nếu \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)
Thật vậy :
Ta có : \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)z-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)[\left(x+y+z\right)^2-3\left(x+y\right)z-3xy]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2yz+2zx-3zx-3yz-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)luôn đúng , do \(x+y+z=0\)
Áp dụng vào , khi đó : \(\left(1\right)\Leftrightarrow\)\(\frac{3\left(a-1\right)\left(b-1\right)\left(c-1\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
Vì \(a-1\ne0,b-1\ne0,c-1\ne0\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\ne0\)
\(\Rightarrow B=3\)
Vậy \(B=3\)
\(B=\frac{\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)
Đặt \(a-1=x,b-1=y,z-1=z\)thì \(x+y+z=0\).
\(B=\frac{x^3+y^3+z^3}{xyz}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz}{xyz}=\frac{3xyz}{xyz}=3\)
Áp dụng bđt: a2 + b2 > = (a + b)2/2
Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b
Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CM đúng <=> (a + b)2 > = 4ab
<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)
Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)
Dấu"=" xảy ra <=> x = y = 1/2
Vậy minA = 18/ <=> x = y = 1/2
Đặt \(d=\left(2n+1,2n^2-1\right)\).
\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}\left[\left(2n^2+n\right)-\left(2n^2-1\right)\right]⋮d\)
\(\Rightarrow\left(n+1\right)⋮d\Rightarrow\left[2\left(n+1\right)-\left(2n+1\right)\right]⋮d\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(2n+1,2n^2-1\right)=1\)
Suy ra đpcm.
Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)
Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi \(x=\frac{144}{x}\)=> x=12
Vậy Min A = 49 khi và chỉ khi x=12
\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)
Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:
\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)
Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))
\(\Rightarrow A\ge25+24=49\)
Vậy \(minA=49\)\(\Leftrightarrow x=12\)
( 2x - 1 )( x - 3 ) - 2x( x + 5 ) = 0
⇔ 2x2 - 7x + 3 - 2x2 - 10x = 0
⇔ -17x + 3 = 0
⇔ x = 3/17
\(\left(2x-1\right)\left(x-3\right)-2x\left(x+5\right)=0\)
\(\Leftrightarrow2x^2-6x-x+3-2x^2-10x=0\)'
\(\Leftrightarrow-17x+3=0\Leftrightarrow x=\frac{3}{17}\)
Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)
\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\)
Mà x+y+z=xyz
=> P+2=3=>P=1
Vậy P=1
2x2 -6x -x +3-2x2-10x=0
-17x+3=0
-17x=-3
x=\(\frac{17}{3}\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\left(\frac{1}{1-x}+\frac{1}{1+x}\right)+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\left(\frac{2}{1-x^2}+\frac{2}{1+x^2}\right)+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\left(\frac{4}{1-x^4}+\frac{4}{1+x^4}\right)+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\left(\frac{8}{1-x^8}+\frac{8}{1+x^8}\right)+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{32}{1-x^{32}}\)
Ta có : \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x+1-x}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2\left(1-x^2+1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4\left(1-x^4+1+x^4\right)}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8\left(1-x^8+1+x^8\right)}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16\left(1-x^{16}+1+x^{16}\right)}{1+x^{32}}\)
\(=\frac{32}{1+x^{32}}\)