K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7

4^x+342=7^y

4^x phải lẻ vì 7^y lúc nào cũng lẻ

x =0 ( 4^0 = 1 ; 1 lẻ )

có 7^y=342+1

7^y = 343

7^3=343

y =3

a: \(A=\left(\frac{x-4}{\sqrt{x}-2}+\frac{x\sqrt{x}-8}{4-x}\right):\frac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\frac{x-4}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{x-4\sqrt{x}+4+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2-\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}\right):\frac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}+2\right)^2-x-2\sqrt{x}-4}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}=\frac{x+4\sqrt{x}+4-x-2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}-1=\frac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+1+3}\)

\(=-\frac{\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)^2+3}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}<0\forall x\) thỏa mãn ĐKXĐ

=>A<1

c: Ta có: \(2\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

\(x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3\ge3\forall x\)

=>\(A=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\ge0\forall x\) thỏa mãn ĐKXĐ

=>0<=A<1

Để A là số nguyên thì A=0

=>x=0(nhận)


Bài 1:

\(A=\sqrt{3+\sqrt{5+2\sqrt3}}+\sqrt{3-\sqrt{5+2\sqrt3}}\)

=>\(A^2=3+\sqrt{5+2\sqrt3}+3-\sqrt{5+2\sqrt3}+2\cdot\sqrt{3^2-\left(5+2\sqrt3\right)}\)

=>\(A^2=6+2\cdot\sqrt{9-5-2\sqrt3}=6+2\cdot\sqrt{4-2\sqrt3}\)

=>\(A^2=6+2\sqrt{\left(\sqrt3-1\right)^2}=6+2\left(\sqrt3-1\right)=4+2\sqrt3=\left(\sqrt3+1\right)^2\)

=>\(A=\sqrt3+1\)

Bài 63:

Đặt \(A=\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}\)

=>\(A^2=4+\sqrt3+4-\sqrt3+2\cdot\sqrt{4^2-3}=8+2\sqrt{13}\)

=>\(A=\sqrt{8+2\sqrt{13}}\)

\(N=\frac{\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt2}\)

\(=\frac{\sqrt{8+2\sqrt{13}}}{\sqrt{4+\sqrt{13}}}+\sqrt{25-2\cdot5\cdot\sqrt2+2}\)

\(=\sqrt2+\sqrt{\left(5-\sqrt2\right)^2}=\sqrt2+5-\sqrt2=5\)

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


15 tháng 6

2\(x\) - 6 = - 5\(x\) (\(x-3\))

2\(x\) - 6 = - 5\(x^2\) + 15\(x\)

5\(x^2\) - 15\(x\) + 2\(x\) - 6 = 0

5\(x^2\) - (15\(x-2x\)) - 6 = 0

5\(x^2\) - 13\(x\) - 6 = 0

Δ = 13\(^2\) - 4.5.(-6)

Δ = 169 + 20.6

Δ = 169 + 120

Δ = 289

Phương trình có hai nghiệm phân biệt:

\(x1\) = \(\frac{-\left(-13\right)+\sqrt{289}}{2.5}\)

\(x1\) = \(\frac{13+17}{10}\)

\(x1\) = \(\frac{30}{10}\)

\(x1\) = 3

\(x2=\) \(\frac{-\left(-13\right)-\sqrt{289}}{2.5}\)

\(x2=\frac{13-17}{10}\)

\(x2=\frac{-4}{10}\)

\(x2=-0,4\)

Vậy phương trình có hai nghiệm là: \(x1=3;x2=-0,4\)


2x-6=-5x(x-3)

=>\(2\left(x-3\right)+5x\left(x-3\right)=0\)

=>(x-3)(5x+2)=0

=>\(\left[\begin{array}{l}x-3=0\\ 5x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\\ x=-\frac25\end{array}\right.\)

10 tháng 6

là \(\sum\limits\)

10 tháng 6

Kí hiệu Sigma là Σ nhé!

Phương trình hoành độ giao điểm của (d1) và (d2) là:

2x+5=-4x-1

=>2x+4x=-5-1

=>6x=-6

=>x=-1

Thay x=-1 vào y=2x+5, ta được:

\(y=2\cdot\left(-1\right)+5=-2+5=3\)

Thay x=-1 và y=3 vào (d3), ta được:

\(\left(m+1\right)\cdot\left(-1\right)+2m-1=3\)

=>-m-1+2m-1=3

=>m-2=3

=>m=5

\(\frac{1}{A}=\frac{x+4}{4\sqrt{x}}\)

=>\(\frac{1}{A}-1=\frac{x+4-4\sqrt{x}}{4\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)^2}{4\sqrt{x}}\ge0\forall x\) thỏa mãn ĐKXĐ

=>\(\frac{1}{A}\ge1\forall x\) thỏa mãn ĐKXĐ

=>A<=1 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

Ta có: \(4\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

=>\(A=\frac{4\sqrt{x}}{x+4}\ge0\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

16 tháng 4

Lên google tìm đi chị🙏🙏🙏

16 tháng 4
  • \(M\)\(K\) là các trung điểm của các cạnh \(B C\)\(A D\) của tứ giác \(A B C D\), do đó, ta có:
    \(B M = M C \text{v} \overset{ˋ}{\text{a}} A K = K D\)
  • \(A M\)\(B K\) cắt nhau tại \(H\).
  • \(D M\)\(C K\) cắt nhau tại \(L\).

Ta biết rằng diện tích của một tam giác có thể tính theo công thức:

\(S = \frac{1}{2} \times độ\&\text{nbsp};\text{d} \overset{ˋ}{\text{a}} \text{i}\&\text{nbsp};đ \overset{ˊ}{\text{a}} \text{y} \times \text{chi} \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{cao} .\)

Khi các đường chéo cắt nhau, ta có thể tính diện tích của các tam giác con trong tứ giác thông qua các đoạn thẳng cắt nhau.

Diện tích của các tam giác trong tứ giác:

  • Diện tích của tam giác \(A B H\) là:
    \(S_{A B H} = \frac{1}{2} \times A B \times h_{A B H} ,\)
    trong đó \(h_{A B H}\) là chiều cao từ \(H\) xuống đáy \(A B\).
  • Diện tích của tam giác \(C D L\) là:
    \(S_{C D L} = \frac{1}{2} \times C D \times h_{C D L} ,\)
    trong đó \(h_{C D L}\) là chiều cao từ \(L\) xuống đáy \(C D\).

Tổng diện tích của tứ giác \(H K L M\) có thể được chia thành diện tích của các tam giác nhỏ:

\(S_{H K L M} = S_{A B H} + S_{C D L} .\)

Do đó, ta đã chứng minh rằng diện tích của tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\)\(C D L\), như yêu cầu.

Kết luận:
Diện tích tứ giác \(H K L M\) bằng tổng diện tích của hai tam giác \(A B H\)\(C D L\).