K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3

ΔMAB đều \(\Rightarrow \hat{A M B} = 6 0^{0}\)

Theo tính chất 2 tiếp tuyến, ta có MO là phân giác \(\hat{A M B}\)

\(\Rightarrow \hat{A M O} = \frac{1}{2} \hat{A M B} = 3 0^{0}\)

Trong tam giác vuông OAM:

\(t a n \hat{A M O} = \frac{O A}{A M} \Rightarrow O A = A M . t a n \hat{A M O} = 15 \sqrt{3} . t a n 3 0^{0} = 15 \left(\right. c m \left.\right)\)

\(\Rightarrow 2 R = 2 O A = 30 \left(\right. c m \left.\right)\)

Bài 2:

a: Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>CN\(\perp\)BN tại N

Xét tứ giác CNAB có \(\widehat{CNB}=\widehat{CAB}=90^0\)

nên CNAB là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{DNM};\widehat{DCM}\) là  các góc nội tiếp cùng chắn cung DM

=>\(\widehat{DNM}=\widehat{DCM}\)

mà \(\widehat{DNM}=\widehat{ANB}=\widehat{ACB}\)(CNAB nội tiếp)

nên \(\widehat{DCA}=\widehat{BCA}\)

=>CA là phân giác của góc BCD

c: C,E,D,N cùng thuộc (O)

=>CEDN nội tiếp

=>\(\widehat{CED}+\widehat{CND}=180^0\)

mà \(\widehat{CND}+\widehat{CBA}=180^0\)(CNAB nội tiếp)

nên \(\widehat{CED}=\widehat{CBA}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên ED//AB

=>ABED là hình thang

a: Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

=>AD\(\perp\)MC tại D

=>\(\widehat{ADM}=90^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

=>\(\widehat{MHA}=90^0=\widehat{MDA}\)

=>MDHA nội tiếp

b: Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(3\right)\)

Xét ΔACM vuông tại A có AD là đường cao

nên \(MD\cdot MC=MA^2\left(4\right)\)

Từ (3),(4) suy ra \(MH\cdot MO=MD\cdot MC\)

 

Bước 1: Đặt ẩn

  • Gọi x là số dãy ghế ban đầu trong phòng họp.
  • Gọi y là số chỗ ngồi trong mỗi dãy ghế ban đầu.

Bước 2: Lập phương trình từ thông tin đề bài

  • Tổng số chỗ ngồi trong phòng họp là 360, ta có phương trình: xy = 360 (1)
  • Nếu thêm cho mỗi dãy 4 chỗ ngồi và bớt đi 3 dãy thì số chỗ ngồi không thay đổi, ta có phương trình: (x - 3)(y + 4) = 360 (2)

Bước 3: Giải hệ phương trình

  1. Từ phương trình (1), ta có y = 360/x.
  2. Thay y = 360/x vào phương trình (2), ta được: (x - 3)(360/x + 4) = 360
  3. Mở ngoặc và đơn giản hóa phương trình:
    • 360 + 4x - 1080/x - 12 = 360
    • 4x - 1080/x - 12 = 0
    • 4x^2 - 12x - 1080 = 0
    • x^2 - 3x - 270 = 0
  4. Giải phương trình bậc hai:
    • (x - 18)(x + 15) = 0
    • x = 18 hoặc x = -15
  5. Vì số dãy ghế không thể âm, ta chọn x = 18.
  6. Thay x = 18 vào phương trình (1) để tìm y:
    • 18y = 360
    • y = 20

Kết luận

Ban đầu, số chỗ ngồi trong phòng họp được chia thành 18 dãy.

26 tháng 2

Cho hỏi. Đổi mật khẩu kiểu j vâyj mọi n

21 tháng 2

gọi x; y lần lượt là số chi tiết mà tổ 1 và tổ 2 sản xuất trong tháng đầu (ĐK: 0 < x; y < 300)

theo đề 2 tổ sản xuất đc 300 chi tiết nên: x + y = 300 (1)

số chi tiết tổ 1 vượt là: \(x\cdot\left(1+15\%\right)=1,15x\)

số chi tiết tổ 2 vượt là: \(y\cdot\left(1+20\%\right)=1,2y\)

mà cả 2 tổ sản xuất đc 352 chi tiết nên:

\(1,15x+1,2y=352\left(2\right)\)

từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=300\\1,15x+1,2y=352\end{matrix}\right.\)

giải ra ta được: \(\left\{{}\begin{matrix}x=160\left(TM\right)\\y=140\left(TM\right)\end{matrix}\right.\)

vậy tổ 1 sản xuất 160 chi tiết máy trong tháng đầu; tổ 2 sản xuất 140 chi tiết máy trong tháng đầu

20 tháng 2

a) Tìm \(M\) để đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\):

Để hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\), ta thay giá trị \(x = 2\)\(y = 4\) vào phương trình hàm số:

\(y = \left(\right. m + 1 \left.\right) x^{2}\)

Thay \(x = 2\)\(y = 4\):

\(4 = \left(\right. m + 1 \left.\right) \cdot 2^{2}\) \(4 = \left(\right. m + 1 \left.\right) \cdot 4\) \(4 = 4 \left(\right. m + 1 \left.\right)\)

Chia cả hai vế cho 4:

\(1 = m + 1\) \(m = 0\)

Vậy giá trị của \(m\)0.

like minh nhe minh lam duoc cau a thôi

Để giải bài toán này, chúng ta sẽ thực hiện từng bước một.

a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\)

  1. Thay tọa độ điểm A vào hàm số:
    Hàm số cho trước là: \(y = \left(\right. m + 1 \left.\right) x^{2}\)Thay \(x = 2\)\(y = 4\): \(4 = \left(\right. m + 1 \left.\right) \left(\right. 2^{2} \left.\right)\)
  2. Giải phương trình:
    Tính giá trị \(2^{2}\): \(2^{2} = 4 \Rightarrow 4 = \left(\right. m + 1 \left.\right) \cdot 4\)Chia cả hai vế cho 4: \(1 = m + 1\)Trừ 1 từ cả hai vế: \(m = 0\)

Kết luận phần a:

  • Giá trị của \(m\) là \(0\).

b) Vẽ đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) với giá trị \(m\) vừa tìm được

  1. Thay giá trị \(m\) vào hàm số:
    Với \(m = 0\): \(y = \left(\right. 0 + 1 \left.\right) x^{2} = x^{2}\)
  2. Xác định các điểm trên đồ thị:
    • Khi \(x = - 2\)\(y = \left(\right. - 2 \left.\right)^{2} = 4\)
    • Khi \(x = - 1\)\(y = \left(\right. - 1 \left.\right)^{2} = 1\)
    • Khi \(x = 0\)\(y = 0^{2} = 0\)
    • Khi \(x = 1\)\(y = 1^{2} = 1\)
    • Khi \(x = 2\)\(y = 2^{2} = 4\)
  3. Vẽ đồ thị:
    Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên trên. Các điểm mà chúng ta đã tính sẽ giúp hình dung đồ thị:
    • Điểm \(\left(\right. - 2 , 4 \left.\right)\)
    • Điểm \(\left(\right. - 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 0 , 0 \left.\right)\)
    • Điểm \(\left(\right. 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 2 , 4 \left.\right)\)

Kết luận phần b:

  • Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên với đỉnh tại điểm \(\left(\right. 0 , 0 \left.\right)\).

Nếu bạn cần thêm thông tin hoặc có câu hỏi gì khác, hãy cho tôi biết!

Gọi H là giao điểm của BC và AD

D đối xứng A qua BC

=>BC\(\perp\)AD tại H và H là trung điểm của AD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến
Do đó: ΔBAD cân tại B

=>BA=BD

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAC và ΔBDC có

BA=BD

CA=CD

BC chung

Do đó: ΔBAC=ΔBDC

=>\(\widehat{BAC}=\widehat{BDC}=90^0\)

=>ABDC là tứ giác nội tiếp

18 tháng 2

bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)

thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)

thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)

theo đề bài, xe thứ nhất đến sớm hơn 1 giờ  nên:

\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

\(v_1=v_2+10=40+10=50\left(km.h\right)\)

vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h

18 tháng 2

bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\) 

thời gian người đó dự định đi hết quãng đường là: 

\(t_d=\dfrac{90}{v}\left(h\right)\)

1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)

quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)

quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)

thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)

mà \(t_t=t_d+\dfrac{18}{60}\)

\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)

thời gian thực tế người đó đi là: 

\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)

vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p