cho tam giác ABC, đường tròn đường kính BC cắt AB, AC tại F, E. BE cắt CF tại H. AH cắt EF và BC tại I, D. Đường thẳng song song với BC qua I cắt AB, BE tại P và Q. AQ cắt BC tại K. Chứng Minh D là trung điểm của BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ΔMAB đều \(\Rightarrow \hat{A M B} = 6 0^{0}\)
Theo tính chất 2 tiếp tuyến, ta có MO là phân giác \(\hat{A M B}\)
\(\Rightarrow \hat{A M O} = \frac{1}{2} \hat{A M B} = 3 0^{0}\)
Trong tam giác vuông OAM:
\(t a n \hat{A M O} = \frac{O A}{A M} \Rightarrow O A = A M . t a n \hat{A M O} = 15 \sqrt{3} . t a n 3 0^{0} = 15 \left(\right. c m \left.\right)\)
\(\Rightarrow 2 R = 2 O A = 30 \left(\right. c m \left.\right)\)

Bài 2:
a: Xét (O) có
ΔCNM nội tiếp
CM là đường kính
Do đó: ΔCNM vuông tại N
=>CN\(\perp\)BN tại N
Xét tứ giác CNAB có \(\widehat{CNB}=\widehat{CAB}=90^0\)
nên CNAB là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{DNM};\widehat{DCM}\) là các góc nội tiếp cùng chắn cung DM
=>\(\widehat{DNM}=\widehat{DCM}\)
mà \(\widehat{DNM}=\widehat{ANB}=\widehat{ACB}\)(CNAB nội tiếp)
nên \(\widehat{DCA}=\widehat{BCA}\)
=>CA là phân giác của góc BCD
c: C,E,D,N cùng thuộc (O)
=>CEDN nội tiếp
=>\(\widehat{CED}+\widehat{CND}=180^0\)
mà \(\widehat{CND}+\widehat{CBA}=180^0\)(CNAB nội tiếp)
nên \(\widehat{CED}=\widehat{CBA}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//AB
=>ABED là hình thang

a: Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
=>AD\(\perp\)MC tại D
=>\(\widehat{ADM}=90^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
=>\(\widehat{MHA}=90^0=\widehat{MDA}\)
=>MDHA nội tiếp
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(3\right)\)
Xét ΔACM vuông tại A có AD là đường cao
nên \(MD\cdot MC=MA^2\left(4\right)\)
Từ (3),(4) suy ra \(MH\cdot MO=MD\cdot MC\)

Bước 1: Đặt ẩn
- Gọi x là số dãy ghế ban đầu trong phòng họp.
- Gọi y là số chỗ ngồi trong mỗi dãy ghế ban đầu.
Bước 2: Lập phương trình từ thông tin đề bài
- Tổng số chỗ ngồi trong phòng họp là 360, ta có phương trình: xy = 360 (1)
- Nếu thêm cho mỗi dãy 4 chỗ ngồi và bớt đi 3 dãy thì số chỗ ngồi không thay đổi, ta có phương trình: (x - 3)(y + 4) = 360 (2)
Bước 3: Giải hệ phương trình
- Từ phương trình (1), ta có y = 360/x.
- Thay y = 360/x vào phương trình (2), ta được: (x - 3)(360/x + 4) = 360
- Mở ngoặc và đơn giản hóa phương trình:
- 360 + 4x - 1080/x - 12 = 360
- 4x - 1080/x - 12 = 0
- 4x^2 - 12x - 1080 = 0
- x^2 - 3x - 270 = 0
- Giải phương trình bậc hai:
- (x - 18)(x + 15) = 0
- x = 18 hoặc x = -15
- Vì số dãy ghế không thể âm, ta chọn x = 18.
- Thay x = 18 vào phương trình (1) để tìm y:
- 18y = 360
- y = 20
Kết luận
Ban đầu, số chỗ ngồi trong phòng họp được chia thành 18 dãy.

gọi x; y lần lượt là số chi tiết mà tổ 1 và tổ 2 sản xuất trong tháng đầu (ĐK: 0 < x; y < 300)
theo đề 2 tổ sản xuất đc 300 chi tiết nên: x + y = 300 (1)
số chi tiết tổ 1 vượt là: \(x\cdot\left(1+15\%\right)=1,15x\)
số chi tiết tổ 2 vượt là: \(y\cdot\left(1+20\%\right)=1,2y\)
mà cả 2 tổ sản xuất đc 352 chi tiết nên:
\(1,15x+1,2y=352\left(2\right)\)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=300\\1,15x+1,2y=352\end{matrix}\right.\)
giải ra ta được: \(\left\{{}\begin{matrix}x=160\left(TM\right)\\y=140\left(TM\right)\end{matrix}\right.\)
vậy tổ 1 sản xuất 160 chi tiết máy trong tháng đầu; tổ 2 sản xuất 140 chi tiết máy trong tháng đầu

a) Tìm \(M\) để đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\):
Để hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\), ta thay giá trị \(x = 2\) và \(y = 4\) vào phương trình hàm số:
\(y = \left(\right. m + 1 \left.\right) x^{2}\)
Thay \(x = 2\) và \(y = 4\):
\(4 = \left(\right. m + 1 \left.\right) \cdot 2^{2}\) \(4 = \left(\right. m + 1 \left.\right) \cdot 4\) \(4 = 4 \left(\right. m + 1 \left.\right)\)
Chia cả hai vế cho 4:
\(1 = m + 1\) \(m = 0\)
Vậy giá trị của \(m\) là 0.
like minh nhe minh lam duoc cau a thôi
Để giải bài toán này, chúng ta sẽ thực hiện từng bước một.
a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\)
- Thay tọa độ điểm A vào hàm số:
Hàm số cho trước là: \(y = \left(\right. m + 1 \left.\right) x^{2}\)Thay \(x = 2\) và \(y = 4\): \(4 = \left(\right. m + 1 \left.\right) \left(\right. 2^{2} \left.\right)\) - Giải phương trình:
Tính giá trị \(2^{2}\): \(2^{2} = 4 \Rightarrow 4 = \left(\right. m + 1 \left.\right) \cdot 4\)Chia cả hai vế cho 4: \(1 = m + 1\)Trừ 1 từ cả hai vế: \(m = 0\)
Kết luận phần a:
- Giá trị của \(m\) là \(0\).
b) Vẽ đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) với giá trị \(m\) vừa tìm được
- Thay giá trị \(m\) vào hàm số:
Với \(m = 0\): \(y = \left(\right. 0 + 1 \left.\right) x^{2} = x^{2}\) - Xác định các điểm trên đồ thị:
- Khi \(x = - 2\), \(y = \left(\right. - 2 \left.\right)^{2} = 4\)
- Khi \(x = - 1\), \(y = \left(\right. - 1 \left.\right)^{2} = 1\)
- Khi \(x = 0\), \(y = 0^{2} = 0\)
- Khi \(x = 1\), \(y = 1^{2} = 1\)
- Khi \(x = 2\), \(y = 2^{2} = 4\)
- Vẽ đồ thị:
Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên trên. Các điểm mà chúng ta đã tính sẽ giúp hình dung đồ thị: - Điểm \(\left(\right. - 2 , 4 \left.\right)\)
- Điểm \(\left(\right. - 1 , 1 \left.\right)\)
- Điểm \(\left(\right. 0 , 0 \left.\right)\)
- Điểm \(\left(\right. 1 , 1 \left.\right)\)
- Điểm \(\left(\right. 2 , 4 \left.\right)\)
Kết luận phần b:
- Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên với đỉnh tại điểm \(\left(\right. 0 , 0 \left.\right)\).
Nếu bạn cần thêm thông tin hoặc có câu hỏi gì khác, hãy cho tôi biết!

Gọi H là giao điểm của BC và AD
D đối xứng A qua BC
=>BC\(\perp\)AD tại H và H là trung điểm của AD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>BA=BD
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAC và ΔBDC có
BA=BD
CA=CD
BC chung
Do đó: ΔBAC=ΔBDC
=>\(\widehat{BAC}=\widehat{BDC}=90^0\)
=>ABDC là tứ giác nội tiếp

bàu 1 : gọi v2 (km/h) là vận tốc của xe thứ hai (đk: v1 > v2 > 0)
vận tốc xe 1 sẽ là v1 = v2 + 10 (km/h)
thời gian xe 1 đi từ A -> B: \(t_1=\dfrac{200}{v_1}=\dfrac{200}{v_2+10}\left(h\right)\)
thời gian xe 2 đi từ A -> B: \(t_2=\dfrac{200}{v_2}\left(h\right)\)
theo đề bài, xe thứ nhất đến sớm hơn 1 giờ nên:
\(t_2-t_1=1\Leftrightarrow\dfrac{200}{v_2}-\dfrac{200}{v_2+10}=1\\ =>200\left(v_2+10\right)-200v_2=v_2\left(v_2+10\right)\\ =>200v_2+2000-200v_2=v_2^2+10v_2\\ =>2000=v_2^2+10v_2\\ =>v_2^2+10v_2-2000=0\\ =>\left[{}\begin{matrix}v_2=40\left(km.h\right)\left(TM\right)\\v_2=-50\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
\(v_1=v_2+10=40+10=50\left(km.h\right)\)
vậy vận tốc xe 1 là 50km/h; vận tốc xe 2 là 40km/h
bài 2: gọi \(t_d\text{ là thời gian dự tính; }t_t\text{ là thời gian thực tế}\)
thời gian người đó dự định đi hết quãng đường là:
\(t_d=\dfrac{90}{v}\left(h\right)\)
1/2 quãng đường là: \(90\cdot\dfrac{1}{2}=45\left(km\right)\)
quãng đường đầu tiên người đó đi: \(t_1=\dfrac{45}{v}\left(h\right)\)
quãng đường còn lại người đó đi: \(t_2=\dfrac{45}{v-10}\left(h\right)\)
thời gian thực tế người đó đi là: \(t_t=\dfrac{45}{v}+\dfrac{45}{v-10}\left(h\right)\)
mà \(t_t=t_d+\dfrac{18}{60}\)
\(=>\dfrac{45}{v}+\dfrac{45}{v-10}=\dfrac{90}{v}+0,3\\ =>\dfrac{45}{v-10}-\dfrac{45}{v}=0,3\\ 45v-45\left(v-10\right)=0,3v\left(v-10\right)\\ 45v-45v+450=0,3v^2-3v\\ =>0,3v^2-3v-450=0\\ < =>v^2-10v-1500=0\\ =>\left[{}\begin{matrix}v\approx44\left(km.h\right)\left(TM\right)\\v\approx-34\left(km.h\right)\left(KTM\right)\end{matrix}\right.\)
thời gian thực tế người đó đi là:
\(t_t=\dfrac{45}{44}+\dfrac{45}{44-10}\approx2,34\left(h\right)=2h20p\)
vậy vận tốc dự đinh là 44km/hl thời gian đi là 2h20p