(-5)5 biết 54 =625 ;
gấp lắm! cíu
\(\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x=\left(x^3\right)^{\dfrac{1}{3}}\)
b: \(x=\left(x^5\right)^{\dfrac{1}{5}}\)
\(\dfrac{1}{3^6}=\dfrac{1}{3^4\cdot3^2}=\dfrac{1}{81\cdot9}=\dfrac{1}{729}\)
\(\dfrac{1}{3^6}\) = \(\dfrac{1}{3^4.3^2}\) = \(\dfrac{1}{81.9}\) = \(\dfrac{1}{729}\)
a: \(\dfrac{\left(-1\right)^2}{2^2}=\dfrac{1}{4};\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
Do đó: \(\dfrac{\left(-1\right)^2}{2^2}=\left(-\dfrac{1}{2}\right)^2\)
b: \(\dfrac{3^3}{5^3}=\left(\dfrac{3}{5}\right)^3< \dfrac{3}{5}\)(do \(0< \dfrac{3}{5}< 1\))
d: \(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4\)
Vì \(0< \dfrac{3}{4}< 1\)
nên \(\left(\dfrac{3}{4}\right)^4< \left(\dfrac{3}{4}\right)^2\)
=>\(\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3< \left(\dfrac{3}{4}\right)^2\)
e: \(\left(0,5\right)^6:\left(0,5\right)^2=\left(0,5\right)^{6-2}=\left(0,5\right)^4=\left(0,5\right)^{2\cdot2}=\left[\left(0,5\right)^2\right]^2\)
a: Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(\widehat{yOz}+50^0=180^0\)
=>\(\widehat{yOz}=130^0\)
b: Sửa đề: \(\widehat{OKt}=130^0\)
Ta có: \(\widehat{tKO}+\widehat{xOK}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Kt//Ox
\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)
Mà giữa 2 và 3 không có số tự nhiên nào
=> Không có n thỏa mãn
\(c,125\ge5^{n+1}>25\\ =>5^3\ge5^{n+1}>5^2\\ =>3\ge n+1>2\\ =>3-1\ge n>2-1\\ =>2\ge n>1\)
Mà n là số tự nhiên
=> n = 2
\(d,2\cdot16\ge2^n>4\\ =>2\cdot2^4\ge2^n>2^2\\ =>2^{1+4}\ge2^n>2^2\\ =>2^5\ge2^n>2^2\\ =>5\ge n>2\)
Mà n là số tự nhiên
=> n ∈ {3; 4; 5}
Vì \(\widehat{xOy}\ne180^0\)
nên Ox không song song với Oy
Vì a//Ox
và Ox không song song với Oy
nên a luôn cắt Oy
Ta có: \(\widehat{M}=\widehat{N}\)
=>AM//BN
Ta có: AM//BN
=>\(\widehat{A_1}+\widehat{B_1}=180^0\)
mà \(2\widehat{A_1}=3\cdot\widehat{B_1}\)
nên \(\widehat{B_1}=180^0\cdot\dfrac{2}{5}=72^0\)
Ta có: \(\widehat{B_1}+\widehat{B_2}=180^0\)(hai góc kề bù)
=>\(\widehat{B_2}+72^0=180^0\)
=>\(\widehat{B_2}=108^0\)
\(\widehat{B_3}=\widehat{B_1}\)(hai góc đối đỉnh)
mà \(\widehat{B_1}=72^0\)
nên \(\widehat{B_3}=72^0\)
a: Vì OA và OB là hai tia đối nhau
nên O nằm giữa A và B
=>AB=OA+OB=6+2=8(cm)
b: I là trung điểm của AB
=>\(IA=IB=\dfrac{AB}{2}=4\left(cm\right)\)
Vì AI<AO
nên I nằm giữa A và O
=>AI+IO=AO
=>IO+4=6
=>IO=2(cm)
=>OA=3IO
c: Các góc đỉnh O có trên hình là \(\widehat{xOt};\widehat{xOz};\widehat{xOy};\widehat{tOz};\widehat{tOy};\widehat{zOy}\)
\(\left(-5\right)^5=\left(-5\right)^4\cdot\left(-5\right)=5^4\cdot\left(-5\right)=625\cdot\left(-5\right)=-3125\)