K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) A = ( x - 2y )3 + ( x + 2y )3 - 2x ( x2 + y )=

       = x3 - 6x2y + 12xy2 - 8y3 + x3 + 6x2y + 12xy2 + 8y3 - 2x3 - 2xy

       =                       24xy2 - 2xy

b) B = ( x - 1 )( x + y ) ( x - y )  - x2( x - 1 )= 

       =  ( x -1 )( x2 - y2 ) - x2 ( x - 1 )

       = ( x - 1 )( x2 - y2 - x2 )

       = -y2 ( x - 1 ) 

c ) C =  ( x + 2)- 2( x + 2 )( x - 8 ) + ( x - 8 ) 2 = 

        = ( x + 2 - x + 8 ) 2 

        = 102

          = 100

HOk tốt!!!!!!!!!! 

Bài 2 : a) \(2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)

b) \(2\left(2x-1\right)+6x\left(2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(2+6x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2+6x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\6x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{2}{6}=-\frac{1}{3}\end{cases}}}\)

c) \(\left(x-3\right)^2-\left(2x+6\right)^2=0\Leftrightarrow\left(x-3-2x-6\right)\left(x-3+2x+6\right)=0\)

\(\Leftrightarrow\left(-x-9\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}-x-9=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}}\)

Tự KL cho các phần 

28 tháng 8 2021

bạn xem nhìn được khôngundefined

Cho biểu thức P = (4xx214x2 1x):(4x2x414x2 +1)

a) Rút gọn P

= (x^21+4x^2-3x)/(x^41-1)

b) Tìm x để P =< 0 

b) Tìm x để P 0

28 tháng 8 2021

( ) thứ nhất bạn viết rõ ra hơn được không .-.

28 tháng 8 2021

ĐKXĐ : \(\hept{\begin{cases}x^2-2\ge0\\7-x^2\ge0\end{cases}}\Leftrightarrow\sqrt{2}\le x\le\sqrt{7}\)

Áp dụng bất đẳng thức Bunhiacopxki 

Ta có N = \(\sqrt{x^2+1}+\sqrt{2\left(x^2-2\right)}+\sqrt{3\left(7-x^2\right)}\)

\(=1.\sqrt{x^2+1}+1.\sqrt{2\left(x^2-2\right)}+1.\sqrt{3\left(7-x^2\right)}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left[x^2+1+2\left(x^2-2\right)+3\left(7-x^2\right)\right]}\)

\(=\sqrt{3.18}=\sqrt{54}\)

Dấu "=" xảy ra <=> \(\frac{1}{x^2+1}=\frac{1}{2\left(x^2-2\right)}=\frac{1}{3\left(7-x^2\right)}\)

<=> x2 + 1 = 2x2 - 4 

<=> x = \(\sqrt{5}\)(tm)

Vậy Max N = \(\sqrt{54}\Leftrightarrow x=\sqrt{5}\)

28 tháng 8 2021

Áp dụng BĐT BSC và BĐT Cosi:

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)

\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)

\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)

\(=35\)

\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

28 tháng 8 2021

Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :

\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)

\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )

Dấu "=" xảy ra <=> x=y=z=1/3

28 tháng 8 2021

Sai thi thong cam ...

\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3yz+3xz^2+3yx^2+3zx^2+3xy^2+3xyz+3zy^2+3yz^2\)

\(\Leftrightarrow\left(x+y+z\right)^3=x^3+3x^2y+3y^2x+y^3+3x^2z+6xyz+3y^2z+3xz^2+z^3\)

\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y\right)^3+3z\left(x+y\right)^2+3z^2\left(x+y\right)+z^3\)

\(\Leftrightarrow\left(x+y+z\right)^3=\left(x+y+z\right)^3\)

\(M=x^2-2xy+4y^2+12xy+22\)

\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)

\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\) 

( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt ) 

28 tháng 8 2021

\(A=x^2+2x+9y^2-6y+2018\)

\(=x^2+2x+1+9y^2-6y+1+2016\)

\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)

Dấu ''='' xảy ra khi x = -1 ; y = 1/3 

Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3 

28 tháng 8 2021

HOC dot

28 tháng 8 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\) 

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)

\(\left(x-2y+1\right)^2=x^2+4y^2+1-4xy-4y+2x\)

\(\left(3x+y-2\right)^2=9x^2+y^2+4+6xy-12x-4y\)

28 tháng 8 2021

a) -4x2 + 8x - 4

= - (4x2 - 8x + 4)

= - (2x - 2)2

b) -x52 + 10 x - 5

= - 5(x2 - 2x + 1)

= - 5(x - 1)2

28 tháng 8 2021

-4x^2+8x-4

=-4.(x^2-2x+1)

=-4.(x-1)^2