Tính \(\sqrt{24-x^2}+\sqrt{8-x^2}\)Biết \(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
19 tháng 6 2020
\(\left(\frac{x\sqrt{x}+1}{\sqrt{x}+1}-x\right)\left(\frac{x\sqrt{x}-1}{\sqrt{x}-1}-x\right)\)( đK: x\(\ge\)0 ; x\(\ne\)1)
Ta có: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(x\sqrt{x}-1=\left(\sqrt{x}\right)^3-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
Do đó:
\(\left(\frac{x\sqrt{x}+1}{\sqrt{x}+1}-x\right)\left(\frac{x\sqrt{x}-1}{\sqrt{x}-1}-x\right)\)
\(=\left(x-\sqrt{x}+1-x\right)\left(x+\sqrt{x}+1-x\right)\)
\(=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)=1-x\)
BC
1
19 tháng 6 2020
\(x_1+x_2=3+2\sqrt{3}+3-2\sqrt{3}=6\)
\(x_1.x_2=3^2-\left(2\sqrt{3}\right)^2=-3\)
=> Phương trình bậc 2 có dạng: x^2 - 6x - 3 = 0