Cho a, b là các số thực dương thỏa mãn a+b+ab=3. Chứng minh:
\(\frac{a}{b+3}+\frac{b}{a+3}+\frac{ab}{a+b}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đánh giá bởi Bunhiacopski ta dễ có:
\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng lại ta được:
\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)
Ta đi chứng minh:
\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)
Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)
Đẳng thức xảy ra tại a=b=c=1
a
Ta có:
\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)
Nên phương trình luôn có 2 nghiệm phân biệt với mọi m
b
Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)
Vậy .....................
Vào TKHĐ của mình xem hình ảnh cho tiện nhé !
đây là câu trả lời của mình nha ! Tránh bị phàn nàn là copy