K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)

Đặt \(8x+5=t\left(t\ge0\right)\)

\(t\left(t+2\right)\left(t+1\right)^2-72=0\)

\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)

\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)

\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)

\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)

\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)

hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 ) 

\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 ) 

Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }

26 tháng 1 2021

\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)

Đặt \(t=8x+6\)

\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)

\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)

\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)

Vậy....

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm 

26 tháng 1 2021

\(a+b+c=7\Rightarrow a+b+c-1=6\)

Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow49=23+2\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca=13\)

Lại có \(ab+c-6=ab+c-\left(a+b+c-1\right)=ab-a-b+1=\left(a-1\right)\left(b-1\right)\)

Tương tự \(bc+a-6=\left(b-1\right)\left(c-1\right)\)

                \(ca+b-6=\left(c-1\right)\left(a-1\right)\)

\(\Rightarrow A=\frac{1}{\left(a-1\right)\left(b-1\right)}+\frac{1}{\left(b-1\right)\left(c-1\right)}+\frac{1}{\left(c-1\right)\left(a-1\right)}\)

            \(=\frac{c-1+a-1+b-1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=\frac{a+b+c-3}{abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1}\)

             \(=\frac{7-3}{3-13+7-1}=-1\)

26 tháng 1 2021

a, \(x-5=\frac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\frac{3x-15}{3}=\frac{x+2}{3}\Leftrightarrow\frac{3x-15-x-2}{3}=0\)

\(\Leftrightarrow2x-17=0\Leftrightarrow x=\frac{17}{2}\)

b, \(\frac{x}{3}+\frac{x}{4}=\frac{1}{5}-\frac{x}{6}\)

\(\Leftrightarrow\frac{2x}{6}+\frac{x}{6}=\frac{4}{20}-\frac{5x}{20}\Leftrightarrow\frac{x}{2}=\frac{4-5x}{20}\)

\(\Leftrightarrow\frac{10x}{20}-\frac{4-5x}{20}=0\Leftrightarrow15x-4=0\Leftrightarrow x=\frac{4}{15}\)

26 tháng 1 2021

a, x - 5 = \(\frac{1}{3}\).(x + 2) 

<=> x - 5 = \(\frac{1}{3}\)x + \(\frac{2}{3}\)

<=> x - 5 - \(\frac{1}{3}\)x - \(\frac{2}{3}\)= 0

<=>\(\frac{2}{3}\)x  - \(\frac{17}{3}\)= 0

<=>x = \(\frac{17}{2}\)

26 tháng 1 2021

\(\left(4x^2-9\right)\left(x+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}4x^2-9=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x=-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm\frac{3}{2}\\x=-2\end{cases}}}\)

Vậy : \(x\in\left\{\frac{9}{4};-2\right\}\)

#Hoctot

26 tháng 1 2021

\(\left(4x^2-9\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)\left(x+2\right)=0\Leftrightarrow x=\frac{3}{2};-\frac{3}{2};-2\)

Vậy tập nghiệm của phương trình là { \(\pm\frac{3}{2}\);-2 }

26 tháng 1 2021

\(\left(2x+6\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(2x+6\right)\left(x-4\right)\left(x+4\right)=0\)

TH1 : \(2x+6=0\Leftrightarrow x=-2\)

TH2 : \(x-4=0\Leftrightarrow x=4\)

TH3 : \(x+4=0\Leftrightarrow x=-4\)

Vậy tập nghiệm của phương trình là S = { \(-2;\pm4\)}