Cho tam giác ABC vuông tại A, đường cao AH.
a. Biết AB=6, BC=10. Tính AC, AH?
b. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh AE.AB=AF.AC
c. Gọi M là trung điểm BH. Chứng minh EM vuông góc EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`g)`
\(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}+\dfrac{5}{7}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)+\dfrac{5}{7}\)
\(=\dfrac{-3}{7}\cdot1+\dfrac{5}{7}\)
\(=-\dfrac{3}{7}+\dfrac{5}{7}=\dfrac{2}{7}\)
`h)`
\(\dfrac{5}{9}\cdot\dfrac{7}{13}+\dfrac{5}{9}\cdot\dfrac{9}{13}-\dfrac{5}{9}\cdot\dfrac{3}{13}\)
\(=\dfrac{5}{9}\cdot\left(\dfrac{7}{13}+\dfrac{9}{13}-\dfrac{3}{13}\right)\)
\(=\dfrac{5}{9}\cdot\left(\dfrac{7+9-3}{13}\right)\)
\(=\dfrac{5}{9}\cdot1=\dfrac{5}{9}\)
`i)`
\(\left(\dfrac{-4}{5}+\dfrac{4}{3}\right)+\left(\dfrac{-5}{4}+\dfrac{14}{5}\right)-\dfrac{7}{3}\)
\(=\dfrac{-4}{5}+\dfrac{4}{3}+\dfrac{-5}{4}+\dfrac{14}{5}-\dfrac{7}{3}\)
\(=\left(-\dfrac{4}{5}+\dfrac{14}{5}\right)+\left(\dfrac{4}{3}-\dfrac{7}{3}\right)-\dfrac{5}{4}\)
\(=\dfrac{10}{5}+\dfrac{-3}{3}-\dfrac{5}{4}\)
\(=2-1-\dfrac{5}{4}\)
\(=1-\dfrac{5}{4}\)
\(=-\dfrac{1}{4}\)
`j)`
\(\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\)
\(=\left(\dfrac{8}{3}\cdot\dfrac{3}{8}\right)\cdot\left(\dfrac{2}{5}\cdot10\right)\cdot\dfrac{19}{92}\)
\(=1\cdot\dfrac{20}{5}\cdot\dfrac{19}{92}\)
\(=4\cdot\dfrac{19}{92}=\dfrac{19}{23}\)
`k)`
\(\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{14}+1\dfrac{5}{7}\)
\(=-\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{9}{14}+1+\dfrac{5}{7}\)
\(=\dfrac{5}{7}\cdot\left(-\dfrac{2}{11}-\dfrac{9}{14}+1\right)+1\)
\(=\dfrac{5}{7}\cdot\dfrac{27}{154}+1\)
\(=\dfrac{135}{1078}+1=\dfrac{1213}{1078}\)
`l)`
\(\dfrac{12}{19}\cdot\dfrac{7}{15}\cdot\dfrac{-13}{17}\cdot\dfrac{19}{12}\cdot\dfrac{17}{13}\)
\(=\left(\dfrac{12}{19}\cdot\dfrac{19}{12}\right)\cdot\left(-\dfrac{13}{17}\cdot\dfrac{17}{13}\right)\cdot\dfrac{7}{15}\)
\(=1\cdot\left(-1\right)\cdot\dfrac{7}{15}=-\dfrac{7}{15}\)
Biểu thức mẫu là $\sqrt{4}-x^2$ hay $\sqrt{4-x^2}$ vậy bạn?
Số số tự nhiên có thể lập được là:
5x4x3x2x1=120(số)
Giải:
Từ 1 đến 112 có các số lẻ là các số lần lượt thuộc dãy số sau:
1; 3; 5; 7; 9; 11;...; 111
Đây là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Dãy số trên có số các số hạng là:
(111 - 1) : 2 + 1 = 56 (số hạng)
Vậy từ 1 đến 112 có 56 số lẻ
Đáp số: 56 số lẻ
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
b: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
=>\(\widehat{DEH}=\widehat{DAH}\)
mà \(\widehat{HEF}=\widehat{HCF}\)
và \(\widehat{DAH}=\widehat{HCF}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{DEB}=\widehat{FEB}\)
=>EB là phân giác của góc DEF
a: Để hàm số y=(m-2)x+m+3 đồng biến thì m-2>0
=>m>2
b: Để đồ thị hàm số y=(m-2)x+m+3 song song với đường thẳng y=2x+7 thì
\(\left\{{}\begin{matrix}m-2=2\\m+3\ne7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=4\\m\ne4\end{matrix}\right.\)
=>\(m\in\varnothing\)
Hàm số y = (m + 2)x + 3 là hàm số bậc nhất khi m + 2 ≠ 0, hay m ≠ – 2.
Vậy ta có điều kiện m ≠ – 2.
a) Đồ thị hàm số đã cho song song với đường thẳng y = –x khi m + 2 = –1, tức là m = –3.
Giá trị này thỏa mãn điều kiện m ≠ – 2.
Vậy giá trị m cần tìm là m = –3.
b) Với m = –3 ta có hàm số y = –x + 3.
Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0).
Lời giải:
Phản chứng, giả sử $a$ không cắt $b$. Suy ra $a\parallel b$
Mà: $a\perp Ox$
$\Rightarrow b\perp Ox$
Mà $b\perp Oy$
$\Rightarrow Ox\parallel Oy$
Điều này vô lý do $Ox$ cắt $Oy$ (bằng chứng là $\widehat{xOy}$ là góc nhọn)
Vậy điều giả sử là sai. Suy ra $a$ cắt $b$
Lời giải:
a. Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$
$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$
b.
Xét tam giác $AEH$ và $AHB$ có:
$\widehat{A}$ chung
$\widehat{AEH}=\widehat{AHB}=90^0$
$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)
$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$
$\Rightarrow AH^2=AE.AB(1)$
Hoàn toàn tương tự: $\triangle AFH\sim \triangle AHC$
$\Rightarrow AH^2=AF.AC(2)$
Từ $(1); (2)\Rightarrow AE.AB=AF.AC$
c.
$HE\perp AB, AB\perp AC$ nên $HE\parallel AC$
Tam giác vuông $BEH$ vuông tại $E$ có trung tuyến $EM$ ứng với cạnh huyền $BH$
nên $EM=\frac{BH}{2}=MH$
$\Rightarrow EMH$ cân tại $M$
$\Rightarrow \widehat{MEH}=\widehat{MHE}=\widehat{HCA}(3)$ (2 góc đồng vị)
Tứ giác $AEHF$ có 3 góc $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hcn.
$\Rightarrow \widehat{HEF}=\widehat{HAF}=\widehat{HAC}(4)$
Từ $(3); (4)\Rightarrow \widehat{MEH}+\widehat{HEF}=\widehat{HCA}+\widehat{HAC}$
$\Rightarrow \widehat{MEF}=\widehat{HCA}+\widehat{HAC}=90^0$
$\Rightarrow EM\perp EF$
Hình vẽ: