K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021
5 tháng 4 2021


DE ngắn nhất ⇔ AM ngắn nhất. Điều đó xảy ra khi AM là đường cao ΔABC.
                           

27 tháng 9 2021

a) Vì \widehat{AEM}=\widehat{AFM}={90}^\circAEM=AFM=90 nên A, E, M, F thuộc đường tròn tâm I đường kính AM \Rightarrow\ \widehat{EIF}=2\widehat{EAF}={120}^\circ EIF=2EAF=120 (góc ở tâm bằng hai lần góc nội tiếp chắn cung \stackrel\frown{EF}EF).

b) Hạ IH\bot EFIHEF, ta có IE=IF=\frac{1}{2}AMIE=IF=21AM nên \Delta IEFΔIEF cân \Rightarrow HE=HFHE=HF.

Ta lại có: EH=EI.\sin{\widehat{EIH}}=\frac{1}{2}AM.\sin{{60}^\circ}EH=EI.sinEIH=21AM.sin60 (vì \widehat{EIH}=\widehat{FIH}=\frac{1}{2}\widehat{EIF}={60}^\circEIH=FIH=21EIF=60).

Suy ra EH=\frac{a}{2}.\frac{\sqrt3}{2}=\frac{a\sqrt3}{4}\Rightarrow EF=2EH=\frac{a\sqrt3}{2}EH=2a.23=4a3EF=2EH=2a3.

c) EF nhỏ nhất khi AM nhỏ nhất \Leftrightarrow AM \bot BC.

5 tháng 4 2021

Trả lời:

Tam giác ABC có:

Sin B = AC/BC (hệ thức lượng)

=> AC = Sin B.BC = Sin 450 . 10 = 5√2 (cm)

 Sin C = AB/BC

=> AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 

=> góc A = 1800 - 450 - 300 = 1050

5 tháng 4 2021

Tam giác ABC có: Sin B = ACBCACBC (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = 5252 (cm)

 Sin C = ABBCABBC (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)

=> góc A = 1800 - 450 - 300 = 1050

5 tháng 4 2021


DE ngắn nhất ⇔ AM ngắn nhất. Điều đó xảy ra khi AM là đường cao ΔABC.
                           

14 tháng 10 2021
5 tháng 4 2021

a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)

=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)

=> ∠BAD= ∠BCA + ∠DAC 

Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC 

=> ∠BAD= ∠ADB

=> ΔABD cân tại B

b, Xét ΔABD cân tại B => AB= BD

Xét ΔABC vuông tại A

=> AB²= BH. BC

            = (BD- HD). BC

            = (AB- 6). 25

            = 25 AB- 150

=> AB²- 25AB+ 150= 0

<=> (AB-15)(AB-10)= 0 

<=> AB= 15 hoặc AB= 10

Vậy AB= 15cm, hoặc AB= 10 cm

* tự vẽ hình nha !!!

20 tháng 9 2021

 

a, có góc BAD =90độ -góc A1; góc BDA=90độ-góc A2
mà góc A1=A2=> góc BAD=góc BDA do đó tam giác BAD cân tại B.

BH.BC=AB^2=>(x-6).25=x^2<=>x^2−25x+150=0x=10 hoặc x=15x=15.

Vậy AB = 10cmAB=10cm hoặc AB = 15cmAB=15cm

20 tháng 9 2021

hứng minh được AEB \backsim AFCAEBAFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC

Ta có: \Delta AEF\backsim\Delta ABCΔAEFΔABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm 
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2

20 tháng 9 2021

 

loading...
18 tháng 8 2021

a) tan a < tan b

b) cot a > cot b

18 tháng 8 2021

\(a.tan\alpha=\dfrac{sin\alpha}{cos\alpha}< tan\beta=\dfrac{sin\beta}{cos\beta}\)
\(b.cot\alpha=\dfrac{cos\alpha}{sin\alpha}>cot\beta=\dfrac{cos\beta}{sin\beta}\)

18 tháng 8 2021

a) sin a < tan a

b) cos a < cot a

 

18 tháng 8 2021

\(a.tan\alpha=\dfrac{sin\alpha}{cos\alpha}< sin\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)
\(b.cot\alpha=\dfrac{cos\alpha}{sin\alpha}< cos\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)

18 tháng 8 2021

sin 35 > tan 37

cos 40 < tan 55

18 tháng 8 2021

 \(a.sin35^o< sin37^o< tan37^o\)

\(b.cos40^o< cot40^o=tan50^o< tan55^o\)