K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ DK//AC(K\(\in\)BC)

DK//AC

=>\(\widehat{DKB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{ABC}\)(ΔABC cân tại A)

nên \(\widehat{DKB}=\widehat{DBK}\)

=>DK=DB

mà DB=CE

nên DK=CE

Xét ΔMDK và ΔMEC có

\(\widehat{MDK}=\widehat{MEC}\)(DK//CE)

DK=EC

\(\widehat{MKD}=\widehat{MCE}\)(DK//CE)

Do đó: ΔMDK=ΔMEC
=>DM=EM

2 tháng 6 2024

A B C E D M E

2 tháng 6 2024
TRẢ LỜI:   Cho hình vuông ABCD có độ dài cạnh 60cm trên cạnh AB và CD lấy các điểm M,N sao cho AM=CN Tìm vị trí điểm M,N biết rằng S AMCN=1/8 S ABCD (ảnh 1)

Đặt AM=NC=x��=��=�

Vì {AM//NCAM=NCAMCN��//����=��⇒���� là hình bình hành SAMNC=60x⇒�����=60�

Vì SAMCN=SABCD60x=6028x=7,5(cm)�����=�����⇒60�=6028⇔�=7,5��

Vậy M  cách A  7,5cm,7,5��,N cách C 7,5cm

a: loading...

b: Phương trình hoành độ giao điểm là:

\(x^2=\left(m-2\right)x+6\)

=>\(x^2-\left(m-2\right)x-6=0\)

\(a\cdot c=1\cdot\left(-6\right)=-6< 0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m-2\\x_1x_2=\dfrac{c}{a}=-6\end{matrix}\right.\)

\(x_2^2-x_1x_2+\left(m-2\right)x_1=16\)

=>\(x_2^2+x_1\left(x_1+x_2\right)-x_1x_2=16\)

=>\(x_2^2+x_1^2=16\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2=16\)

=>\(\left(m-2\right)^2-2\cdot\left(-6\right)=16\)

=>\(\left(m-2\right)^2=4\)

=>\(\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

31 tháng 5 2024

Một hình bình hành có chiều cao là 9cm và bằng 3/4 độ dài đáy. Diện tích hình bình hành đó là 108 cm vuông

Độ dài đáy là 9:3/4=12(cm)

Diện tích hình bình hành là 9x12=108(cm2)

31 tháng 5 2024

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

 

31 tháng 5 2024

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

31 tháng 5 2024

11, 76

31 tháng 5 2024

= 294/25

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔNAI và ΔNCK có

\(\widehat{NAI}=\widehat{NCK}\)(AI//CK)

NA=NC

\(\widehat{ANI}=\widehat{CNK}\)(hai góc đối đỉnh)

Do đó: ΔNAI=ΔNCK

=>NI=NK

c: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của CB

Xét ΔABC có

AH,BN là các đường trung tuyến

AH cắt BN tại I

Do đó: I là trọng tâm của ΔABC

=>BI=2IN

mà IK=2IN

nên BI=IK

=>I là trung điểm của BK

Ta có: KC//AH

AH\(\perp\)BC

Do đó: KC\(\perp\)CB

=>ΔKCB vuông tại C

ΔCKB vuông tại C

mà CI là đường trung tuyến

nên IC=IK=IB

Xét ΔKBC có

KH,CI là các đường trung tuyến

KH cắt CI tại G

Do đó: G là trọng tâm của ΔKBC

=>IG=1/3IC

mà IC=IK

nên \(IG=\dfrac{1}{3}IK\)

31 tháng 5 2024

hình đâu

 

31 tháng 5 2024

                              Giải:

Vì   a : 6 dư 2   ⇒ a + 10 ⋮ 6

      a : 11  dư 1 ⇒ a + 10 ⋮ 11

            ⇒ a + 10 ⋮ 6 và 11

6 = 2.3; 11 = 11; BCNN(6; 11) = 2.3.11 =  66

           ⇒ a + 10 ⋮ 66

Vậy a chia 66 dư 10