giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y-1\right)^2\) (HĐT số 2)
Giải:
Cạnh của hình vuông là: 112 : 4 = 28 (cm)
Diện tích hình vuông là: 28 x 28 = 784 (cm2)
Đs:..
Độ dài cạnh hình vuông là:
\(112:4=28\left(cm\right)\)
Diện tích hình vuông là:
\(28\times28=784\left(cm^2\right)\)
a; A = 102 + m - 68 ⋮ 2
102 ⋮ 2; 68 ⋮ 2
A ⋮ 2 ⇔ m ⋮ 2
⇒ m = 2k (k \(\in\)N)
b; B = 15 + 24 - m + 305 ⋮ 5
15 ⋮ 5; 305 ⋮ 5 ⇒ B ⋮ 5 ⇔ 24 - m ⋮ 5
⇒ 25 - 1 - m ⋮ 5 ⇒ 1 + m ⋮ 5 ⇒ m = 5k - 1(k \(\in\)N)
Số trận thắng của ông Sáu là:
\(\left(46-12\right):2=17\) (trận)
Đáp số: 17 trận thắng
Tổng số tuổi của hai anh em :
\(26x2=52\left(tuổi\right)\)
Số tuổi của anh :
\(\left(52+12\right):2=32\left(tuổi\right)\)
Số tuổi của em :
\(32-12=20\left(tuổi\right)\)
Sau 3 năm tuổi của anh :
\(32+3=35\left(tuổi\right)\)
Sau 3 năm tuổi của em :
\(20+3=23\left(tuổi\right)\)
Đáp số...
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Rightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=ab+bc+ca\)
\(\Rightarrow a+b+c+\left(abc-1\right)=ab+bc+ca\) (do \(abc-1=0\) nên có thể thêm bớt)
\(\Rightarrow abc-ab-bc-ca+a+b+c-1=0\)
\(\Rightarrow ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+c-1=0\)
\(\Rightarrow\left(c-1\right)\left(ab-b-a+1\right)=0\)
\(\Rightarrow\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=0\)
\(\Rightarrow\left(c-1\right)\left(a-1\right)\left(b-1\right)=0\) (đpcm)
a.
Chiều rộng của thửa ruộng là:
\(120\times\dfrac{1}{3}=40\left(m\right)\)
Chu vi của thửa ruộng là:
\(\left(120+40\right)\times2=320\left(m\right)\)
b.
Chiều dài của phần còn lại là:
\(120-40=80\left(m\right)\)
Chu vi của phần còn lại là:
\(\left(80+40\right)\times2=240\left(m\right)\)
4.
a.
Áp dụng đẳng thức: \(sin^2\alpha+cos^2\alpha=1\)
\(\Rightarrow\left(\dfrac{1}{3}\right)^2+cos^2\alpha=1\)
\(\Rightarrow cos^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)
\(\Rightarrow cos\alpha=\dfrac{2\sqrt{2}}{3}\) (do \(\alpha\) nhọn nên \(cos\alpha>0\))
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{3}:\dfrac{2\sqrt{2}}{3}=\dfrac{\sqrt{2}}{4}\)
b.
\(P=sin^21^0+sin^289^0+sin^22^0+sin^288^0+...+sin^244^0+sin^246^0+sin^245^0+sin^290^0\)
\(=sin^21^0+sin^2\left(90^0-1^0\right)+sin^22^0+sin^2\left(90^0-2^0\right)+...+sin^244^0+sin^2\left(90^0-44^0\right)+\left(\dfrac{\sqrt{2}}{2}\right)^2+1^2\)
\(=sin^21^0+cos^21^0+sin^22^0+cos^22^0+...+sin^244^0+cos^244^0+\dfrac{3}{2}\)
\(=1+1+...+1+\dfrac{3}{2}\) (có 44 số 1)
\(=44+\dfrac{3}{2}=\dfrac{91}{2}\)
c.
\(\dfrac{1-tan\alpha}{1+tan\alpha}=\dfrac{1-\dfrac{sin\alpha}{cos\alpha}}{1+\dfrac{sin\alpha}{cos\alpha}}=\dfrac{\dfrac{cos\alpha-sin\alpha}{cos\alpha}}{\dfrac{cos\alpha+sin\alpha}{cos\alpha}}=\dfrac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)