\(\sqrt{x-1}+\sqrt{x^2-1}\)= \(x\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3-x=x^2y-y\left(1\right)\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\left(2\right)\end{cases}}\)
điều kiện: \(y\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=\pm1\end{cases}}\)
-nếu x=\(\pm\)1 thay vào phương trình (2) ta có: \(\sqrt{y}-1=0\Leftrightarrow y=1\)
-nếu \(x=y\ge0\)
khi đó \(\left(2\right)\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\left(3\right)\)
do \(2\left(x^4+1\right)\ge2\cdot2\sqrt{x^4\cdot1}=4x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge2\left|x\right|=2x\)
nên \(VT\left(3\right)\ge2\left(x-2\sqrt{x}+1\right)=2\left(\sqrt{x}-1\right)^2\ge0\)
do đó \(pt\left(3\right)\Leftrightarrow\hept{\begin{cases}x^4=1\\\sqrt{x}-1=0\end{cases}\Leftrightarrow x=1\Rightarrow y=1}\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left\{\left(1,1\right);\left(-1;1\right)\right\}\)
Hôm nay sol vài bài trên olm rồi off tiếp
\(\sqrt{xy+y}=\sqrt{y\left(x+1\right)}\)
ĐKXĐ: \(x>-1,y>0\)
Đặt \(\sqrt{x+1}=a;\sqrt{y}=b\left(a,b>0\right)\)
HPT \(\Leftrightarrow\hept{\begin{cases}a^2-1+\frac{1}{a}=\frac{4}{a+b}-1\\b^2+\frac{1}{b}=2ab\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^4+a^3b-3a+b=0\\2ab^2-b^3-1=0\end{cases}}\)
PT(2) \(\Leftrightarrow2ab^2=\left(b+1\right)\left(b^2-b+1\right)\Rightarrow a=\frac{\left(b+1\right)\left(b^2-b+1\right)}{2b^2}\)
Thay ngược lên pt(1) tương đương \(\left(3b^6+8b^3+1\right)\left(b^3-1\right)^2=0\)
\(\Rightarrow b=1\rightarrow a=1\)
HPT có nghiệm duy nhất a = b = 1
\(\hept{\begin{cases}6x^2-xy-2y^2=56\\5x^2-xy-y^2=49\end{cases}}\)
Lấy phương trình 1 trừ phương trình 2 ta được :
\(\left(6x^2-xy-2y^2\right)-\left(5x^2-xy-y^2\right)=56-49\)
\(< =>6x^2-xy-2y^2-5x^2+xy+y^2=7\)
\(< =>\left(6x^2-5x^2\right)+\left(xy-xy\right)-\left(2y^2-y^2\right)=7\)
\(< =>x^2-y^2=7\)\(< =>\left(x-y\right)\left(x+y\right)=7\)
\(< =>\hept{\begin{cases}x-y\\x+y\end{cases}=\hept{\begin{cases}1\\7\end{cases}=\hept{\begin{cases}7\\1\end{cases}=\hept{\begin{cases}-1\\-7\end{cases}=\hept{\begin{cases}-7\\-1\end{cases}}}}}}\)
Với \(\hept{\begin{cases}x-y=1\\x+y=7\end{cases}< =>\hept{\begin{cases}x=1+y\\x+y=7\end{cases}}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(1+y+y=7< =>2y=7-1< =>y=\frac{7-1}{2}=3\)
khi đó : \(x=1+y=1+3=4\)
Với \(\hept{\begin{cases}x-y=7\\x+y=1\end{cases}}< =>\hept{\begin{cases}x=7+y\\x+y=1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(7+y+y=1< =>2y=1-7< =>y=\frac{1-7}{2}=-3\)
khi đó : \(x=7+y=7+\left(-3\right)=4\)
Với \(\hept{\begin{cases}x-y=-1\\x+y=-7\end{cases}}< =>\hept{\begin{cases}x=-1+y\\x+y=-7\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-1+y+y=-7< =>2y=-7+1=-6< =>y=-\frac{6}{2}=-3\)
khi đó : \(x=-1-3=-4\)
Với \(\hept{\begin{cases}x-y=-7\\x+y=-1\end{cases}}< =>\hept{\begin{cases}x=-7+y\\x+y=-1\end{cases}}\)
Lấy pt 1 thay vào pt 2 ta có :
\(-7+y+y=-1< =>2y=-1+7=6< =>y=\frac{6}{2}=3\)
khi đó : \(x+3=-1< =>x=-1-3=-4\)
Vậy ta có 4 bộ số sau thỏa mãn hệ pt trên \(\left\{x;y\right\}=\left\{-4;3\right\};\left\{-4;-3\right\};\left\{4;-3\right\};\left\{4;3\right\}\)
giải phương trình nha