x(x − 1)(x2 − x + 1) − 6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ \(x=by+cz\)\(\Rightarrow by=x-cz\)
\(\Rightarrow b=\frac{x-cz}{y}\)
\(\Rightarrow1+b=\frac{x+y-cz}{y}=\frac{ax+by+2cz-cz}{y}\)
\(=\frac{ax+by+cz}{y}=\frac{\frac{x+y+z}{2}}{y}=\frac{x+y+z}{2y}\)
Chứng minh tương tự , ta được :
\(1+a=\frac{x+y+z}{2x}\)
\(1+c=\frac{x+y+z}{2z}\)
\(\Rightarrow Q=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Vậy \(Q=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=1\frac{1993}{1995}\) ( ĐK: \(x\ne0,\)\(x\ne-1\))
\(\Leftrightarrow2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=1\frac{1993}{1995}\)
\(\Leftrightarrow2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3988}{1995}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{1994}{1995}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1995}\)
\(\Leftrightarrow x+1=1995\)
\(\Leftrightarrow x=1994\)\(\left(TM\right)\)
Vậy..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow\left[\left(x^2+5x\right)^2+4\left(x^2+5x\right)\right]-\left[6\left(x^2+5x\right)+24\right]=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+4\right)-6\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\left(x+1\right)\left(x+4\right)=0\)
\(\Rightarrow x\in\left\{-6;-4;-1;1\right\}\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt: \(x^2+5x=t\)
\(\Rightarrow t^2-2t-24=0\)
\(\Leftrightarrow t^2+4t-6t-24=0\)
\(\Leftrightarrow t\left(t+4\right)-6\left(t+4\right)=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x=-4\\x^2+5x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+5x+4=0\\x^2+5x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1;x=-4\\x=1;x=-6\end{cases}}}\)
Vậy: \(S=\left\{-1;-4;1;-6\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2a^2+a=3b^2+b\)
\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
*CM 2a+2b+1 và a-b nguyên tố cùng nhau
=> 2a+2b+1 cũng là 1 SCP
Ta có:
\(2a^2+a=3b^2+b\)
\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)
Ta có:
Đặt \(d=\left(a-b,2a+2b+1\right)\).
\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)
\(\Rightarrow\left(a-b\right)+b=a⋮d\)
\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).
Do đó \(a-b,2a+2b+1\)là hai số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=n^3+n^2-n+2=\left(n+2\right)\left(n^2-n+1\right)\)là số nguyên tố suy ra
\(\orbr{\begin{cases}n+2=1\\n^2-n+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=-1\\n=1;n=0\end{cases}}\)
Thử lại đều thỏa mãn.
\(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)
Đặt \(x^2-x=t\)
\(\Leftrightarrow t\left(t+1\right)-6=0\)
\(\Leftrightarrow t^2+t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+3\right)=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(x^2-x+3\ne0\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=2orx=-1\)
Vậy tập nghiệm của phương trình là S = { -1 ; 2 }
x( x - 1 )( x2 - x + 1 ) - 6 = 0
<=> ( x2 - x )( x2 - x + 1 ) - 6 = 0
Đặt t = x2 - x
pt <=> t( t + 1 ) - 6 = 0
<=> t2 + t - 6 = 0
<=> t2 - 2t + 3t - 6 = 0
<=> t( t - 2 ) + 3( t - 2 ) = 0
<=> ( t - 2 )( t + 3 ) = 0
<=> ( x2 - x - 2 )( x2 - x + 3 ) = 0
<=> ( x2 - 2x + x - 2 )( x2 - x + 3 ) = 0
<=> [ x( x - 2 ) + ( x - 2 ) ]( x2 - x + 3 ) = 0
<=> ( x - 2 )( x + 1 )( x2 - x + 3 ) = 0
Vì x2 - x + 3 > 0 ( bạn tự cm vì lười quá @@ )
=> ( x - 2 )( x + 1 ) = 0
<=> x = 2 hoặc x = -1
Vậy ...