Cho hình thang cân ABCD. Chứng minh rằng tồn tại một đường tròn đi qua cả bốn đỉnh của hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ OH ⊥⊥ BN, OK ⊥⊥ AM. Chứng minh ΔCOK=ΔCOHΔCOK=ΔCOH suy ra OC là đường phân giác của tam giác AOB.
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau
Điểm G cách trung điểm M của BC (cố định) một khoảng cố định bằng \dfrac{m}{3}3m.
Kết luận: quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3})(G,3m) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).
Cần tìm điểm cố định sao cho C cách điểm đó một khoảng cố định.
Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)
Kết luận: Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)
a) Chứng minh được BF = DH \Rightarrow⇒ BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).
b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.
Tương tự, FG = GH, GH = HE \Rightarrow⇒ EF = FG = GH = HE. Suy ra EFGH là hình vuông.
Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.
c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60∘=363=23.
a) Chứng minh được BF = DH \Rightarrow⇒ BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).
b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.
Tương tự, FG = GH, GH = HE \Rightarrow⇒ EF = FG = GH = HE. Suy ra EFGH là hình vuông.
Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.
c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60∘=363=23.
OA=oB=oc=od,(O,OA)di qua cac diem a,b,c,d