K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

OA=oB=oc=od,(O,OA)di qua cac diem a,b,c,d

3 tháng 9 2021

Oc la duong phan giac cua tg aob

22 tháng 10 2021

Hạ OH  BN, OK  AM. Chứng minh ΔCOK=ΔCOHΔCOK=ΔCOH suy ra OC là đường phân giác của tam giác AOB.

3 tháng 9 2021

a Tg aeo=tg bfo,bABCD la hinh binh hanh 

3 tháng 9 2021

EB=EC,EA=ED

22 tháng 10 2021

AB = CD

=> cung AB = cung CD 

=> Cung AD = cung BC 

=> AD = BC 

=>  tam giác AED = tam giác CEB  => EA = EC và EB = ED 

=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau

3 tháng 9 2021

a CD <AB,b IE=OE-OI=OF-OI<OF-OH=HF

3 tháng 9 2021

a) CD<AB,b)IE=OE-OI=OF-OI<OF-OH=HF

 

 

3 tháng 9 2021

IC vuông góc IK

3 tháng 9 2021

IC vg góc IK

3 tháng 9 2021

4cm

3 tháng 9 2021

4 cm

15 tháng 8 2021

 Điểm G cách trung điểm M của BC (cố định) một khoảng cố định bằng \dfrac{m}{3}3m.

Kết luận: quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3})(G,3m) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).

17 tháng 8 2021

quỹ tích trọng tâm G của tam giác ABC là đường tròn (G , \dfrac{m}{3})(G,3m) trừ các giao điểm của đường tròn với BC (do G không thể thuộc BC).

15 tháng 8 2021

Cần tìm điểm cố định sao cho C cách điểm đó một khoảng cố định.

Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)

Kết luận: Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)

17 tháng 8 2021

Dựng điểm D đối xứng với B qua A, khi đó D là điểm cố định, AM là đường trung bình của tam giác BCD, CD = 2AM = 2m (cố định)

Quỹ tích điểm C là đường tròn (D ; 2m), trừ các giao điểm của nó với đường thẳng AB (khi đó tam giác ABC trở thành đoạn thẳng)

15 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60=363=23.

17 tháng 8 2021

a) Chứng minh được BF = DH \Rightarrow BFDH là hình bình hành (vì BF // DH). Do đó O thuộc FH (vì O phải là giao điểm của hai đường chéo).

b) Dễ thấy \Delta BEF=\Delta CFGΔBEF=ΔCFG (cgv – cgv) nên EF = FG.

Tương tự, FG = GH, GH = HE \Rightarrow EF = FG = GH = HE. Suy ra EFGH là hình vuông.

Tương tự phần a) ta chứng minh được O thuộc EG. Từ đó, O là giao điểm hai đường chéo của hình vuông EFGH nên O cách đều E, F, G, H.

c) BE=BC .\cot{{60}^\circ}=\frac{6\sqrt3}{3}=2\sqrt3BE=BC .cot60=363=23.