K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2020

cá voi xanh không ? :))))

8 tháng 7 2020

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{x-1}\left(x\ge0;x\ne1\right)\)

\(< =>\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\sqrt{x}^2-1^2}\right):\frac{1}{x-1}\)

\(< =>\frac{2\sqrt{x}}{x-1}.\frac{x-1}{1}=2\sqrt{x}\)

chắc là đúng đấy ạ

8 tháng 7 2020

\(A=\frac{2}{\sqrt{2}+1}+\frac{1}{3+2\sqrt{2}}\)

\(=\frac{2\left(3+2\sqrt{2}\right)}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)

\(=\frac{6+4\sqrt{2}+\sqrt{2}+1}{3\sqrt{2}+2\sqrt{4}+3+2\sqrt{2}}=\frac{7+5\sqrt{2}}{3+4+5\sqrt{2}}=1\)

7 tháng 7 2020

các pro giúp em TvT

8 tháng 7 2020

\(A=\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(ĐKXĐ:x\ge0;x\ne1\right)\)

\(< =>A=\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1}{x-\sqrt{x}}+\sqrt{x}\)

\(< =>A=\frac{1+\sqrt{x}\left(x-\sqrt{x}\right)}{x-\sqrt{x}}=\frac{1+x\sqrt{x}-x}{x-\sqrt{x}}\)

Với \(x=\frac{18}{4+\sqrt{7}}\)thì \(A=\frac{1+\frac{18}{4+\sqrt{7}}.\sqrt{\frac{18}{4+\sqrt{7}}}-\frac{18}{4+\sqrt{7}}}{\frac{18}{4+\sqrt{7}}-\sqrt{\frac{18}{4+\sqrt{7}}}}\)

\(=\frac{1}{18+\frac{4}{7}-\sqrt{18+\frac{4}{7}}}+\sqrt{18+4\sqrt{7}}\)

Em mới lớp 7 nên chỉ làm được thế thôi ạ :3

9 tháng 7 2020

\(=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}+1}-\frac{6}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-1\right)^2-6\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\)

\(=\frac{5-2\sqrt{5}+1-6\sqrt{5}-6}{5-1}=\frac{-8\sqrt{5}}{4}=-2\sqrt{5}\)

7 tháng 7 2020

Chúc chị học tốt

7 tháng 4

mik thấy đề bài có ghi ko tính lần nghỉ cuối đâu mà số lần đi ít hơn số lần dừng một nhỉ

7 tháng 7 2020

Gọi chiều cao của cây là h = AB và cọc tiêu DC = 2m.

Khoảng cách từ chân đến mắt người đo là FE = 1,6m.

Cọc xa cây một khoảng HG = 15m, và người cách cọc một khoảng CE= 0,8m và gọi I là giao điểm của BD và AC.

Ta có: AB ⊥ AI, DC ⊥ AI, FE ⊥ AI

⇒ AB // DC // FE.

Ta có: ΔEFI Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔCDI (vì EF // CD)

=> EFCDEFCD=EICIEICI

Mà CD = 2m , EF = 1,6m

Nên 1,621,62=EICIEICI=>EICIEICI=4545=>EI4EI4=CI5CI5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

EI4EI4CI5CI5=CI−EI5−4CI−EI5−4=CE1CE1=0,8

=>EI1EI1=0,8=> EI = 0,8.4 = 3,2

=>CI5CI5=0,8=> CI= 0,8.5 = 4

Mà CI – EI = CE = 0,8

⇒ EI = 0,8.4 = 3,2m; CI = 5.0,8 = 4m.

⇒ AI = AC + AE + EI = 15 + 0,8 + 3,2 = 19m

+ ΔCDI Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABI (vì CD // AB)

CIAICIAI=CDABCDAB

AB=CD.AICICD.AICI=2.1942.194=9,5 m

Vậy cây cao 9,5m.

7 tháng 7 2020

chịu vì mình là lớp 7

Ta có : \(x^2-mx+m-1=0\left(a=1;b=-m;c=m-1\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=m;x_1x_2=m-1\)

Theo bài ra ta có : \(A=x_1^2+x_2^2-6x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2\)Thay vào ta có pt mới : \(\Leftrightarrow m^2-6.\left(m-1\right)=m^2-6m+6\)

Vì \(m^2-6m+6\ne m^2-8m+8\)

Vậy \(A\ne m^2-8m+8\)