Cho Parabol : y=ax2 (P) và hàm số (d) : y=mx+2m+1
a,CMR (d) luôn đi qua điểm M cố định \(\forall m\)
b,Viết phương trình đường thẳng đi qua M và tiếp xúc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{x-1}\left(x\ge0;x\ne1\right)\)
\(< =>\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\sqrt{x}^2-1^2}\right):\frac{1}{x-1}\)
\(< =>\frac{2\sqrt{x}}{x-1}.\frac{x-1}{1}=2\sqrt{x}\)
chắc là đúng đấy ạ
\(A=\frac{2}{\sqrt{2}+1}+\frac{1}{3+2\sqrt{2}}\)
\(=\frac{2\left(3+2\sqrt{2}\right)}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
\(=\frac{6+4\sqrt{2}+\sqrt{2}+1}{3\sqrt{2}+2\sqrt{4}+3+2\sqrt{2}}=\frac{7+5\sqrt{2}}{3+4+5\sqrt{2}}=1\)
\(A=\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(ĐKXĐ:x\ge0;x\ne1\right)\)
\(< =>A=\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1}{x-\sqrt{x}}+\sqrt{x}\)
\(< =>A=\frac{1+\sqrt{x}\left(x-\sqrt{x}\right)}{x-\sqrt{x}}=\frac{1+x\sqrt{x}-x}{x-\sqrt{x}}\)
Với \(x=\frac{18}{4+\sqrt{7}}\)thì \(A=\frac{1+\frac{18}{4+\sqrt{7}}.\sqrt{\frac{18}{4+\sqrt{7}}}-\frac{18}{4+\sqrt{7}}}{\frac{18}{4+\sqrt{7}}-\sqrt{\frac{18}{4+\sqrt{7}}}}\)
\(=\frac{1}{18+\frac{4}{7}-\sqrt{18+\frac{4}{7}}}+\sqrt{18+4\sqrt{7}}\)
Em mới lớp 7 nên chỉ làm được thế thôi ạ :3
\(=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}+1}-\frac{6}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-1\right)^2-6\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\)
\(=\frac{5-2\sqrt{5}+1-6\sqrt{5}-6}{5-1}=\frac{-8\sqrt{5}}{4}=-2\sqrt{5}\)
mik thấy đề bài có ghi ko tính lần nghỉ cuối đâu mà số lần đi ít hơn số lần dừng một nhỉ
Gọi chiều cao của cây là h = AB và cọc tiêu DC = 2m.
Khoảng cách từ chân đến mắt người đo là FE = 1,6m.
Cọc xa cây một khoảng HG = 15m, và người cách cọc một khoảng CE= 0,8m và gọi I là giao điểm của BD và AC.
Ta có: AB ⊥ AI, DC ⊥ AI, FE ⊥ AI
⇒ AB // DC // FE.
Ta có: ΔEFI ΔCDI (vì EF // CD)
=> EFCDEFCD=EICIEICI
Mà CD = 2m , EF = 1,6m
Nên 1,621,62=EICIEICI=>EICIEICI=4545=>EI4EI4=CI5CI5
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
EI4EI4= CI5CI5=CI−EI5−4CI−EI5−4=CE1CE1=0,8
=>EI1EI1=0,8=> EI = 0,8.4 = 3,2
=>CI5CI5=0,8=> CI= 0,8.5 = 4
Mà CI – EI = CE = 0,8
⇒ EI = 0,8.4 = 3,2m; CI = 5.0,8 = 4m.
⇒ AI = AC + AE + EI = 15 + 0,8 + 3,2 = 19m
+ ΔCDI ΔABI (vì CD // AB)
CIAICIAI=CDABCDAB
AB=CD.AICICD.AICI=2.1942.194=9,5 m
Vậy cây cao 9,5m.
Ta có : \(x^2-mx+m-1=0\left(a=1;b=-m;c=m-1\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=m;x_1x_2=m-1\)
Theo bài ra ta có : \(A=x_1^2+x_2^2-6x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2\)Thay vào ta có pt mới : \(\Leftrightarrow m^2-6.\left(m-1\right)=m^2-6m+6\)
Vì \(m^2-6m+6\ne m^2-8m+8\)
Vậy \(A\ne m^2-8m+8\)
cá voi xanh không ? :))))