K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

Trả lời 

\(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)

Đặt \(M=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\) 

\(M^2=\left(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\right)^2\)

\(M^2=\frac{\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)^2}{\left(\sqrt{\sqrt{5}+1}\right)^2}\)

\(M^2=\frac{\sqrt{5}+2+2\sqrt{\left(\sqrt{5}+2\right).\left(\sqrt{5}-2\right)}+\sqrt{5}-2}{\sqrt{5}+1}\)

\(M^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}\)

\(M^2=\frac{2\sqrt{5}+2}{\sqrt{5}+1}\)

\(M^2=\frac{2.\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\)

\(M^2=2\)

\(M=\sqrt{2}\)

THay M vào B ta có \(B=M-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{2}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{2}-\sqrt{2-2\sqrt{2}+1}\)

\(B=\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}-\sqrt{2}+1\)

\(B=1\)

10 tháng 7 2020

VÀO TKHĐ ĐỂ XEM HÌNH VẼ

Ta có tứ giác AMBC nội tiếp ( O ) nên \(\widehat{KMB}=\widehat{ACB}\)

Mặt khác \(\widehat{BFC}=\widehat{BEC}=90^0\) nên tứ giác BFEC nội tiếp suy ra \(\widehat{KFB}=\widehat{BCE}\)

Khi đó \(\widehat{KMB}=\widehat{KFB}\) nên tứ giác KMFB nội tiếp

Dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{FBC}=\widehat{FEA}\Rightarrow\) tứ giác EFCB nội tiếp

=> \(\widehat{HMA}=90^0\Rightarrow MH\perp AK\)

Nếu bạn gọi J là trung điểm của BC và chứng minh JM vuông góc AK thì bài toán khó hơn nhiều

\(x^2-\sqrt{x+2}=2\)

\(\Leftrightarrow\sqrt{x+2}=x^2-2\)

\(\Leftrightarrow x+2=x^4-4x^2+4\)

\(\Leftrightarrow x+2-x^4+4x^2-4=0\)

\(\Leftrightarrow x-x^4+4x^2-2=0\)

\(\Leftrightarrow\left(-x^2-x+1\right)\left(x-2\right)\left(x+1\right)=0\)

TH1 : delta mà giải

TH2 : x = 2 ; TH3 : x = -1 

10 tháng 7 2020

Bạn tham khảo        Câu hỏi của Phạm Đức Minh