\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
AI GIÚP MÌNH VỚI, MÌNH CẦN GẤP Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a>0,b>0,a\ne b\)
\(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
\(=\)\(\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{1}{a-b}\)
\(=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{a-b}=\frac{1}{a-b}\)
Gọi \(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
Áp dụng Bất đẳng thức Cauchy Schwarz dạng engel ta có :
\(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=\frac{1^2}{1+x}+\frac{1^2}{1+y}+\frac{1^2}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}\)
\(< =>T=\frac{9}{3+7}=\frac{9}{10}\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{7}{3}\)
Vậy \(Min_T=\frac{9}{10}\)khi \(x=y=z=\frac{7}{3}\)
hóng cách khác :))
Mình làm như thế này nè:
Áp dụng BĐT AM - GM ta dễ có:
\(\frac{1}{x+1}+\frac{9\left(x+1\right)}{100}\ge2\sqrt{\frac{1}{x+1}\cdot\frac{9\left(x+1\right)}{100}}=\frac{3}{5}\)
Tương tự:\(\frac{1}{y+1}+\frac{9\left(y+1\right)}{100}\ge\frac{3}{5};\frac{1}{z+1}+\frac{9\left(z+1\right)}{100}\ge\frac{3}{5}\)
Cộng lại:
\(T+\frac{9\left(x+y+z\right)+27}{100}\ge\frac{9}{5}\Leftrightarrow T\ge\frac{9}{10}\)
Đẳng thức xảy ra tại \(x=y=z=\frac{7}{3}\)
Ta có : \(-x^3+x^2+4=0\)
\(\Delta=1^2-4.4.\left(-1\right)=17>0\)
Vậy phương trình có 2 nghiệm phân biệt :
\(x_1=\frac{-1-\sqrt{17}}{-1};x_2=\frac{-1+\sqrt{17}}{-1}\)
Em làm như này chị kiểm tra giúp em với nhá
Xét x=0 không là nghiệm của phương trình
\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)
\(\Leftrightarrow\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)
Đặt \(a=\frac{1}{x^2}>0\)
Khi đó \(\frac{1}{\sqrt{1+a}}+\frac{a}{2}=2\)
\(\Leftrightarrow2+a\sqrt{1+a}=4\sqrt{1+a}\)
\(\Leftrightarrow4\left(\sqrt{1+a}-2\right)-\left(a\sqrt{1+a}-6\right)=0\)
\(\Leftrightarrow4\cdot\frac{1+a-4}{\sqrt{1+a}+2}-\frac{a^2+a^3-36}{a\sqrt{1+a}+6}=0\)
\(\Leftrightarrow\frac{4\left(a-3\right)}{\sqrt{1+a}+2}-\frac{\left(a-3\right)\left(a^2+4a+12\right)}{a\sqrt{1+a}+6}=0\)
\(\Leftrightarrow\left(a-3\right)\left[\frac{4}{\sqrt{1+a}+2}-\frac{a^2+4a+12}{a\sqrt{1+a}+6}\right]=0\)
Cái to to trong hình như còn có nghiệm \(x=2+2\sqrt{2}\) nữa ạ mà em tịt rùi em nghĩ chắc ghép liên hợp nghiệm vô tỉ ^-^
Trả lời
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)
\(\Leftrightarrow x+1+x+2=3\)
\(\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy \(x=0\)
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)
\(\Leftrightarrow2x=0\Leftrightarrow x=0\)