K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2020

Trả lời 

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)

\(\Leftrightarrow x+1+x+2=3\)

\(\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy \(x=0\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\Leftrightarrow x=0\)

10 tháng 7 2020

Với \(a>0,b>0,a\ne b\)

\(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)

\(=\)\(\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{1}{a-b}\)

\(=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{a-b}=\frac{1}{a-b}\)

10 tháng 7 2020

Gọi \(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Áp dụng Bất đẳng thức Cauchy Schwarz dạng engel ta có :

\(T=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=\frac{1^2}{1+x}+\frac{1^2}{1+y}+\frac{1^2}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}\)

\(< =>T=\frac{9}{3+7}=\frac{9}{10}\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{7}{3}\)

Vậy \(Min_T=\frac{9}{10}\)khi \(x=y=z=\frac{7}{3}\)

hóng cách khác :))

10 tháng 7 2020

Mình làm như thế này nè:

Áp dụng BĐT AM - GM ta dễ có:

\(\frac{1}{x+1}+\frac{9\left(x+1\right)}{100}\ge2\sqrt{\frac{1}{x+1}\cdot\frac{9\left(x+1\right)}{100}}=\frac{3}{5}\)

Tương tự:\(\frac{1}{y+1}+\frac{9\left(y+1\right)}{100}\ge\frac{3}{5};\frac{1}{z+1}+\frac{9\left(z+1\right)}{100}\ge\frac{3}{5}\)

Cộng lại:

\(T+\frac{9\left(x+y+z\right)+27}{100}\ge\frac{9}{5}\Leftrightarrow T\ge\frac{9}{10}\)

Đẳng thức xảy ra tại \(x=y=z=\frac{7}{3}\)

Ta có : \(-x^3+x^2+4=0\)

\(\Delta=1^2-4.4.\left(-1\right)=17>0\)

Vậy phương trình có 2 nghiệm phân biệt : 

\(x_1=\frac{-1-\sqrt{17}}{-1};x_2=\frac{-1+\sqrt{17}}{-1}\)

10 tháng 7 2020

Em làm như này chị kiểm tra giúp em với nhá

Xét x=0 không là nghiệm của phương trình

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

\(\Leftrightarrow\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt \(a=\frac{1}{x^2}>0\)

Khi đó \(\frac{1}{\sqrt{1+a}}+\frac{a}{2}=2\)

\(\Leftrightarrow2+a\sqrt{1+a}=4\sqrt{1+a}\)

\(\Leftrightarrow4\left(\sqrt{1+a}-2\right)-\left(a\sqrt{1+a}-6\right)=0\)

\(\Leftrightarrow4\cdot\frac{1+a-4}{\sqrt{1+a}+2}-\frac{a^2+a^3-36}{a\sqrt{1+a}+6}=0\)

\(\Leftrightarrow\frac{4\left(a-3\right)}{\sqrt{1+a}+2}-\frac{\left(a-3\right)\left(a^2+4a+12\right)}{a\sqrt{1+a}+6}=0\)

\(\Leftrightarrow\left(a-3\right)\left[\frac{4}{\sqrt{1+a}+2}-\frac{a^2+4a+12}{a\sqrt{1+a}+6}\right]=0\)

Cái to to trong hình như còn có nghiệm \(x=2+2\sqrt{2}\) nữa ạ mà em tịt rùi em nghĩ chắc ghép liên hợp nghiệm vô tỉ ^-^