K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2

\(a,A=\dfrac{x^2-2x+1}{x^2-1}\\ =\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x-1}{x+1}\)

`b,` Khi `x=3` thì :

\(\dfrac{x-1}{x+1}=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

Khi `x=-3/2` thì :

\(\dfrac{-\dfrac{3}{2}-1}{-\dfrac{3}{2}+1}\\ =\dfrac{-\dfrac{3}{2}-\dfrac{2}{2}}{-\dfrac{3}{2}+\dfrac{2}{2}}\\ =\dfrac{-\dfrac{5}{2}}{-\dfrac{1}{2}}\\ =-\dfrac{5}{2}\cdot\left(-2\right)=\dfrac{10}{2}=5\)

`c,` Để `A` nhận giá trị nguyên ta có :

\(\dfrac{x-1}{x+1}=\dfrac{x+1-2}{x+1}=\dfrac{x+1}{x+1}-\dfrac{2}{x+1}\)

Vậy \(x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

`-> x+1=1=>x=0`

`->x+1=-1=>x=-2`

`->x+1=2=>x=1`

`->x+1=-2=>x=-3`

6 tháng 3

File: undefined 

21 tháng 2

a) 7x + 2 = 0

7x = 0 - 2

7x = -2

x = -2/7

Vậy S = {-2/7}

b) 18 - 5x = 7 + 3x

3x + 5x = 18 - 7

8x = 11

x = 11/8

Vậy S = {11/8}

21 tháng 2

`a, 7x+2=0`

`<=> 7x=-2`

`<=>x=-2/7`

__

`b, 18-5x=7+3x`

`<=> -5x-3x=7-18`

`<=>-8x=-11`

`<=>x=(-11)/(-8)`

`<=>x=11/8`

21 tháng 2

loading... 

21 tháng 2

a) Trong 6 mặt của xúc xắc có 2 mặt là hợp số là 4 và 6 

Xác xuất xảy ra biến cố đó là:

\(P=\dfrac{2}{6}=\dfrac{1}{3}\)

b) Trong 6 mặt của xúc xắc có 2 mặt của xúc xắc chia 3 dư 2 là: 2 và 5 

Xác xuất xảy ra biến cố đó là:

\(P=\dfrac{2}{6}=\dfrac{1}{3}\)

21 tháng 2

Đối với điện thoại Oppo

a) là sự lựa chọn của mọi người dùng điện thoại chưa hợp lí vì chỉ có 13/100 người dùng điện thoại Oppo

b) là sự lựa chọn hàng đầu của người dùng điện thoại chưa hợp lí vì chỉ có 13 người dùng, ít hơn so với Iphone (37 người dùng) và Samsung (39 người dùng)

21 tháng 2

\(B=3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\)

\(2B=2\cdot\left(3x^2+3y^2+z^2+5xy-3yz-3xz-2x-2y+3\right)\)

\(2B=6x^2+6y^2+2z^2+10xy-6yz-6xz-4x-4y+6\)

\(2B=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2-4x-4y+4\right)+\left(4x^2+4y^2+2z^2+10xy-6yz-6xz+2\right)\)

\(4B=2\left(x-y\right)^2+2\left(x^2+y^2+2^2+2\cdot x\cdot y-2\cdot x\cdot2-2\cdot y\cdot2\right)+2\left(4x^2+4y^2+2z^2+10xy-6yz-6xz+2\right)\)

\(4B=\left(x-y\right)^2+\left(x^2-2xy+y^2\right)+2\left(x+y-2\right)^2+\left(8x^2+8y^2+4z^2+20xy-12yz-12xz+4\right)\)

\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left(9x^2+9y^2+4z^2+18xy-12yz-12xz+4\right)\)

\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left[\left(3x\right)^2+\left(3y\right)^2+\left(2z\right)^2+2\cdot3x\cdot3y-2\cdot3x\cdot2z-2\cdot3y\cdot2z\right]+4\)

\(4B=\left(x-y\right)^2+2\left(x+y-2\right)^2+\left(3x+3y-2z\right)^2+4\)

\(B=\dfrac{\left(x-y\right)^2}{4}+\dfrac{\left(x+y-2\right)^2}{2}+\dfrac{\left(3x+3y-2z\right)^2}{4}+1\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{\left(x-y\right)^2}{4}\ge0\forall x,y\\\dfrac{\left(x+y-2\right)^2}{2}\ge0\forall x,y\\\dfrac{\left(3x+3y-2z\right)^2}{4}\ge0\forall x,y,z\end{matrix}\right.\)

\(\Rightarrow B=\dfrac{\left(x-y\right)^2}{4}+\dfrac{\left(x+y-2\right)^2}{2}+\dfrac{\left(3x+3y-2z\right)^2}{4}+1\ge1\forall x,y,z\) 

Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x-y=0\\x+y-2=0\\3x+3y-2z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\2x-2=0\\3x+3x-2z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=3\end{matrix}\right.\)

Vậy: ... 

a: Xét ΔMAB có MD là phân giác

nên \(\dfrac{AD}{DB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)

Xét ΔMAC có ME là phân giác

nên \(\dfrac{AE}{EC}=\dfrac{AM}{MC}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

Xét ΔABC có \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

nên DE//BC
b: Xét ΔABM có DI//BM

nên \(\dfrac{DI}{BM}=\dfrac{AI}{AM}\left(3\right)\)

Xét ΔAMC có IE//MC

nên \(\dfrac{IE}{MC}=\dfrac{AI}{AM}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{DI}{BM}=\dfrac{IE}{MC}\)

mà BM=MC(M là trung điểm của BC)

nên DI=IE

=>I là trung điểm của DE

21 tháng 2

\(H\left(x\right)=x^2+y^2-xy+x+y+1\)

\(\Rightarrow12H\left(x\right)=12\left(x^2+y^2-xy-x+y+1\right)\)

\(\Rightarrow12H\left(x\right)=12x^2+12y^2-12xy-12x+12y+12\)

\(\Rightarrow12H\left(x\right)=\left(12x^2-12xy+3y^2-12x+6y+3\right)+\left(9y^2+6y+9\right)\)

\(\Rightarrow12H\left(x\right)=3\left(4x^2-4xy+y^2-4x+2y+1\right)+\left(9y^2+6y+1\right)+8\)

\(\Rightarrow12H\left(x\right)=3\left[\left(2x\right)^2+y^2+1^2-2\cdot2x\cdot y-2\cdot2x\cdot1+2\cdot y\cdot1\right]+\left[\left(3y\right)^2+2\cdot3y\cdot1+1^2\right]+8\)

\(\Rightarrow12H\left(x\right)=3\left(2x-y-1\right)^2+\left(3y+1\right)^2+8\)

\(\Rightarrow H\left(x\right)=\dfrac{3\left(2x-y-1\right)^2+\left(3y+1\right)^2+8}{12}=\dfrac{\left(2x-y-1\right)^2}{4}+\dfrac{\left(3y+1\right)^2}{12}+\dfrac{2}{3}\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{\left(2x-y-1\right)^2}{4}\ge0\forall x,y\\\dfrac{\left(3y+1\right)^2}{12}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow H\left(x\right)=\dfrac{\left(2x-y-1\right)^2}{4}+\dfrac{\left(3y+1\right)^2}{12}+\dfrac{2}{3}\ge\dfrac{2}{3}\forall x,y\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}2x-y-1=0\\3y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{1}{3}-1=0\\y=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy: ... 

21 tháng 2

a) Viết một số ngẫu nhiên có 2 hoặc 3 chữ số nhỏ hơn 200 các số có thể viết được là:

\(10;11;12;13;...;199;200\)

Số cách viết là:

\(\left(200-10\right):1+1=191\) (cách)  

b) Các số chia hết cho 2 và 5 có 2 hoặc 3 chữ số nhỏ hơn 200 là:

\(10;20;30;...;200\) 

Có: \(\left(200-10\right):10+1=20\) (số) 

Xác xuất xảy ra biến cố là:  \(P=\dfrac{20}{191}\) 

Có 11 số tự nhiên có 2 hoặc 3 chữ số được viết ra là bình phương của một số tự nhiên nhỏ hơn 200 là: \(16;25;36;49;64;81;100;121;144;169;196\)

Xác xuất xảy ra biến cố là:

\(P=\dfrac{11}{191}\)

21 tháng 2

a) Các số có thể viết:

10; 11; 12; ...; 198; 199

Số cách viết:

199 - 10 + 1 = 190 (cách)

b) *) Gọi A là biến cố "Số tự nhiên được viết ra là số chia hết cho 2 và 5"

Các số chia hết cho 2 và 5 có thể viết:

10; 20; 30; ...; 180; 190

Số các số đó:

(190 - 10) : 10 + 1 = 19 (số)

⇒ P(A) = 19/190 = 1/10

*) Gọi B là biến cố "Số tự nhiên được viết ra là bình phương của một số tự nhiên"

Các số là bình phương của một số tự nhiên nhỏ hơn 200:

4²; 5²; 6²; 7²; 8²; 9²; 10²; 11²; 12²; 13²; 14²

Số các số đó là:

14 - 4 + 1 = 11 (số)

⇒ P(B) = 11/190

21 tháng 2

câu a: Ta có BD là đường phân giác của ΔABC

⇒ \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\)

\(\Leftrightarrow\dfrac{DA+DC}{DC}=\dfrac{BA+BC}{BC}\)

ta có AC = CD + AD, mà AC = AB = 15CM

\(\dfrac{15}{DC}=\dfrac{15+10}{10}\\ \dfrac{15}{CD}=\dfrac{25}{10}\\ \Rightarrow CD=\dfrac{15\cdot10}{25}=6\left(cm\right)\)

⇒ DA = AC - CD = 15 - 6 = 9 (cm)

câu b: ta có: BD ⊥ BE nên BE là đường phân giác của góc ngoài tại đỉnh B

\(\Rightarrow\dfrac{BC}{AB}=\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)

\(\dfrac{EC}{EC+15}=\dfrac{2}{3}\Rightarrow3EC=2EC+30\\ \Rightarrow3EC-2EC=30\\ \Rightarrow EC=30\left(cm\right)\)