cho \(x,y,z>0\) tm \(x+y+z\le1\) tìm GTNN
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+xz}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng đó Bạc hồi xưa cứ đến tiết Toán là lại trốn đi chơi net k à !!
Có: a + b = ab \(\le\frac{\left(a+b\right)^2}{4}\)
=> a + b \(\ge4\)
\(\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
\(\ge\frac{4}{a^2+b^2+2\left(a+b\right)}+\sqrt{\left(1+ab\right)^2}\)
\(=\frac{4}{a^2+b^2+2ab}+\left(1+a+b\right)=\frac{4}{\left(a+b\right)^2}+\left(a+b\right)+1\)
\(=\frac{4}{\left(a+b\right)^2}+\frac{a+b}{4^2}+\frac{a+b}{4^2}+\frac{7}{8}\left(a+b\right)+1\)
\(\ge3\sqrt[3]{\frac{4}{\left(a+b\right)^2}.\frac{a+b}{4^2}.\frac{a+b}{4^2}}+\frac{7}{8}.4+1=\frac{3}{4}+\frac{7}{2}+1\)
Dấu "=" xảy ra <=> a = b = 2
ab = 2 => a = 2/b
\(\frac{1}{a^2+2}+\frac{1}{b^2+2}=\frac{1}{\frac{4}{b^2}+2}+\frac{1}{b^2+2}=\frac{b^2}{2\left(2+b^2\right)}+\frac{1}{b^2+2}=\frac{b^2+2}{2\left(b^2+2\right)}=\frac{1}{2}\)
\(x-y-5=0\Rightarrow x=y+5\)
Ta có:
\(\left(y+5+y\right)^2+3\left(y+5+y\right)+2=0\)
\(\Leftrightarrow\left(2y+5\right)^2+3\left(2y+5\right)+2=0\)
\(\Leftrightarrow4y^2+20y+25+6y+15+2=0\)
\(\Leftrightarrow4y^2+26y+42=0\)
\(\Leftrightarrow\left(y+3\right)\left(2y+7\right)=0\)
\(\Leftrightarrow y=-3;y=-\frac{7}{2}\)
Thay vào tìm x nốt
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V
dấu = xảy ra ko đúng rồi phải