K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Áp dụng BĐT Bunyakovsky dạng phân thức ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+bc+ca+ca+ab}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c

10 tháng 2 2021

a) Ta có: \(\left(8x+7\right)^2\left(4x+3\right)\left(x+1\right)=\frac{7}{2}\)

\(\Leftrightarrow\left(8x+7\right)^2\cdot2\left(4x+3\right)\cdot8\left(x+1\right)=16\cdot\frac{7}{2}\)

\(\Leftrightarrow\left(8x+7\right)^2\left(8x+6\right)\left(8x+8\right)=56\)

Đặt \(8x+7=a\) khi đó:

\(a^2\left(a-1\right)\left(a+1\right)=56\)

\(\Leftrightarrow a^2\left(a^2-1\right)=56\)

\(\Leftrightarrow a^4-a^2-56=0\)

\(\Leftrightarrow\left(a^2-8\right)\left(a^2+7\right)=0\)

\(\Leftrightarrow a^2-8=0\Leftrightarrow\left(8x+7\right)^2-8=0\)

\(\Leftrightarrow\left(8x+7\right)^2=8\Leftrightarrow\orbr{\begin{cases}8x+7=2\sqrt{2}\\8x+7=-2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}8x=2\sqrt{2}-7\\8x=-2\sqrt{2}-7\end{cases}}\Rightarrow x=\frac{\pm2\sqrt{2}-7}{8}\)

10 tháng 2 2021

b) Ta có: \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+y^2-2y+1+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\\z=2\end{cases}}\)

Vậy x = -3 , y = 1 , z = 2

10 tháng 2 2021

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

10 tháng 2 2021

Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)

\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(P) = 2015 khi x = 1

Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)

\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)

\(=2015+\left(\frac{x-1}{x}\right)^2\)

Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow P\ge2015\forall x\ne0\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)

\(\Leftrightarrow\frac{x-1}{x}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(MinP=2015\Leftrightarrow x=1\)

Từ \(\hept{\begin{cases}2a=by+cz\\2b=cz+ax\\2c=ax+by\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)=2\left(ax+by+cz\right)\)

\(\Rightarrow a+b+c=ax+by+cz=ax+2a=a\left(x+2\right)\)

\(\Rightarrow\frac{1}{x+2}=\frac{a}{a+b+c}\)

Tương tự , ta có : \(\hept{\begin{cases}\frac{1}{y+2}=\frac{b}{a+b+c}\\\frac{1}{z+2}=\frac{c}{a+b+c}\end{cases}}\)

\(\Rightarrow A=\frac{a+b+c}{a+b+c}=1\)

Vậy \(A=1\)

10 tháng 2 2021
Theo giả thiết thì: 2=by+cz/a Tương tự biến đổi 2 cái kia dống vậy Rồi e thế ba số 2 vừa biến đổi vào biểu thức cần tính là ra
10 tháng 2 2021

mình ghi thiếu: VP=\(\frac{1}{9}\)

10 tháng 2 2021

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{1}{9}\)

<=> \(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)

<=> \(\frac{1}{2}\left(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}\right)=\frac{1}{9}\)

<=> \(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)

<=> \(\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)

<=> \(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)

<=> (x + 1)(x + 7) = 27

<=> x2 + 8x + 7 - 27 = 0

<=> x2 + 8x - 20 = 0

<=> x2 - 2x + 10x - 20 = 0

<=> x(x - 2) + 10(x - 2) = 0

<=> (x + 10(x - 2) = 0

<=> \(\orbr{\begin{cases}x=-10\\x=2\end{cases}}\) 

Vậy \(x\in\left\{-10;2\right\}\)là giá trị cần tìm

10 tháng 2 2021
Phân tích đâ thức thành nhân tử bằng pp dùng hệ số bất định: (x^2-4x-1)(x^2 +x-1)
10 tháng 2 2021

Vì \(1;-1\)không phải là nghiệm của đa thức, đa thức ko có nghiệm nguyên cũng ko có nghiệm hữu tỉ 

Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng ( x^2 + ax + b )( x^2 + cx + d ) 

= x^4 + ( a + c )x^3 + ( ac + b + d)x^2 + ( ad + bc )x + bd 

\(\hept{\begin{cases}a+c=-3\\ac+b+d=-6\\ad+bc=3;bd=1\end{cases}}\)giải hệ ta có : \(a=-4;c=1;b=-1;d=-1\)

Vậy \(x^4-3x^3-6x^2+3x+1=\left(x^2-4x-1\right)\left(x^2+x-1\right)\)

hay \(\left(x^2-4x-1\right)\left(x^2+x-1\right)=0\)

TH1 : \(\Delta=16+4=20\)

\(\Rightarrow x=\frac{4\pm\sqrt{20}}{2}\)

TH2 : \(\Delta=1+4=5\)

\(\Rightarrow x=\frac{-1\pm\sqrt{5}}{2}\)

10 tháng 2 2021
,.......................

Bài tập Tất cả

10 tháng 2 2021

Gọi 2 số nguyên đó là a ; b

Xét hiệu a3 + b3 - (a + b) 

= a3 - a + (b3 - b)

= a(a2 - 1) + b(b2 - 1)

= (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6 ( tổng 2 tích 3 số nguyên liên tiếp)

=> Tổng của hai số tự nhiên bất kì chia hết cho 6 khi và chỉ khi tổng các lập phương của chúng chia hết cho 6 (Đpcm)

  

10 tháng 2 2021

Gọi hai số tự nhiên đó là a và b     (a,b \(\in\)N) thì :

a\(\equiv\)a (mod 6)

b3 \(\equiv\)b (mod 6)

\(\Rightarrow\)a + b \(⋮\)\(\Leftrightarrow\)a3 + b3 \(⋮\)6 (đpcm)