\(\left(\frac{x^2+x-4}{x^2-2x-3}\right)\):\(\left(1-\frac{x-3}{x-2}\right)\)
Rút gọn P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tạm thời mình làm câu bất trước :)) Các câu Đại còn lại để tối mình làm nhé ( chiều mình bận với mình không giỏi Hình lắm )
Câu 6. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)
Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)
Từ (1) và (2) => \(A\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)=> \(A\ge18\)
Đẳng thức xảy ra <=> x = y = 1/2
Vậy MinA = 18
Cau 2
Cosi 2 số dương \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\frac{y}{x}}=2\)
Dấu ''='' xảy ra <=> x = y
Ta có: \(x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}>0\forall x\)
mà \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\)\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy.......
Ta có : \(x^2-3x+5=0\)
\(\Leftrightarrow\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-\frac{11}{4}\)(Vô lí , do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\))
Vậy PT vô nghiệm
mình ghi thiếu đề ạ:
Cho P=...
\(P=\left(\frac{x^2+x-4}{x^2-2x-3}\right):\left(1-\frac{x-3}{x-2}\right)\)
\(=\frac{x^2+x-4}{\left(x+1\right)\left(x-3\right)}:\left(\frac{x-2-x+3}{x-2}\right)\)
\(=\frac{x^2+x-4}{\left(x+1\right)\left(x-3\right)}.\frac{x-2}{1}=\frac{\left(x^2+x-4\right)\left(x-2\right)}{\left(x+1\right)\left(x-3\right)}\)