K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

\(ab+bc+ca=2011abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2011\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow x+y+z=2011\)

Khi đó:

\(Q=\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\)

Sử dụng AM - GM:

\(\frac{x^3}{\left(y+z\right)^2}+\frac{y+z}{8}+\frac{y+z}{8}\ge3\sqrt[3]{\frac{x^3}{\left(y+z\right)^2}\cdot\frac{\left(y+z\right)^2}{8^2}}=\frac{3x}{4}\)

Tương tự cộng lại sử dụng giả thiết ta có đpcm

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

15 tháng 7 2020

Bài làm:

Ta có: \(A=\sqrt{3+2x-x^2}=\sqrt{4-\left(x^2-2x+1\right)}=\sqrt{4-\left(x-1\right)^2}\)

Mà \(4-\left(x-1\right)^2\ge0\left(\forall x\right)\)vì điều kiện để A xác định

Nên dấu "=" xảy ra khi: \(4-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=4\)

\(\Rightarrow\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy \(Min\left(A\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

15 tháng 7 2020

Ta có : \(\frac{x}{y^2+z^2}=\frac{x}{1-x^2}\) ( vì \(x^2+y^2+z^2=1\)

Vì x^2 + y^2 + z^2 = 1 ; x,y,z > 0 nên : 0 < x ; y ; z < 1 

Đến đây , dùng UCT , ta đánh giá được : \(\frac{x}{y^2+z^2}=\frac{x}{1-x^2}\ge\frac{\sqrt{3}}{2}x^2+\frac{\sqrt{3}}{3}\) ( với 0 < x < 1 )  (1) 

CMTT , ta có : \(\frac{y}{x^2+z^2}\ge\frac{\sqrt{3}}{2}y^2+\frac{\sqrt{3}}{3};\frac{z}{x^2+y^2}\ge\frac{\sqrt{3}}{2}z^2+\frac{\sqrt{3}}{3}\) (2)

Lấy (1) cộng (2) ra đpcm .... 

16 tháng 7 2020

Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)

Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)

Tương tự:

\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)

\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)

Đẳng thức xảy ra tại x=y=z=1

15 tháng 7 2020

Trả lời:

\(\sqrt{9x^2+6x+1}=5\)

\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=5\)

\(\Leftrightarrow\left|3x+1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}3x=4\\3x=-6\end{cases}}\)

                                         \(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)

Vậy \(x\in\left\{\frac{4}{3};-2\right\}\)

15 tháng 7 2020

Bài làm:

Ta có: \(\sqrt{9x^2+6x+1}=5\)

\(\Leftrightarrow9x^2+6x+1=5^2\)

\(\Leftrightarrow\left(3x+1\right)^2=5^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=4\\3x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-2;\frac{4}{3}\right\}\)

Học tốt!!!!

15 tháng 7 2020

đặt \(\left(a;b;c\right)=\left(x;2y;3z\right)\)\(\Rightarrow\)\(abc=1\)

bđt \(\Leftrightarrow\)\(\Sigma\frac{1}{a^3+b^3+1}\le1\)

\(VT\le\Sigma\frac{1}{ab\left(a+b\right)+abc}=\Sigma\frac{1}{ab\left(a+b+c\right)}=1\)

20 tháng 2 2023

loading...