K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

2x2-5x-3|x-2|=0

TH1: 2x2-5x-3(x-2)=0

<=> 2x2-5x-3x+6=0

<=> 2x2-8x+6=0

\(\Delta'\)=(-4)2-2.6=4

\(\Delta'\)>0 => pt có 2 nghiệm phân biệt

Giải ra ta có : x1=3 ; x2=1

TH2: 2x2-5x-3.-(x-2)=0

<=>2x2-5x+3x-6=0

<=> 2x2-2x-6=0

\(\Delta'\)=(-1)2-2.(-6)=13

\(\Delta'\)>0 => pt có 2 nghiệm phân biệt

giải ra ta có : \(x_1=\frac{1+\sqrt{13}}{2}\) ; \(x_2=\frac{1-\sqrt{13}}{2}\)

TH1 : \(2x^2-5x-3\left(x-2\right)=0\)

\(\Leftrightarrow2x^2-5x-3x+6=0\)

\(\Leftrightarrow2x^2-8x+6=0\)Ta có : \(\Delta=\left(-8\right)^2-4.6.2=64-48=16>0\)

\(x_1=\frac{8-\sqrt{16}}{4}=\frac{8-4}{4}=1\)

\(x_2=\frac{8+\sqrt{16}}{4}=\frac{8+4}{4}=3\)

TH2 : \(2x^2-5x-3\left(-x+2\right)=0\)

\(\Leftrightarrow2x^2-5x+3x-6=0\)

\(\Leftrightarrow2x^2-2x-6=0\)Ta có : \(\Delta=\left(-2\right)^2-4.\left(-6\right).2=4+48=52\)

\(x_1=\frac{2-\sqrt{52}}{4};x_2=\frac{2+\sqrt{52}}{4}\)

17 tháng 7 2020

Ta có : -3x + y = 5 (1)

2x - y = 2 (2)

Lấy (1) cộng (2) theo vế

=> -3x + y + 2x - y = 5 - 2

=> -x = 3

=> x = -3

Khi đó (2) <=> 2.(-3) - y = -2

=> - 6- y = -2

=> y = -4

Vậy x = -3 ; y = -4

17 tháng 7 2020

Xyz nhầm ở chỗ (2)

Ở trong đề ghi là 2x - y = -2 chứ không phải là 2x - y = 2 dẫn đến sai bài của bạn nhé

17 tháng 7 2020

\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)

\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)

17 tháng 7 2020

+) ĐK: x khác -5 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11\)

<=> \(x^2+\frac{25x^2}{\left(x+5\right)^2}-2.x\frac{5x}{\left(x+5\right)}+\frac{10x^2}{\left(x+5\right)}=11\)

<=> \(\left(x-\frac{5x}{x+5}\right)^2+\frac{10x^2}{x+5}=11\)

<=> \(\left(\frac{x^2}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\) ( đặt t = x^2/x+5 => có phương trình: t^2 + 10t - 11 = 0 => giải t => tìm x ) 

<=> \(\orbr{\begin{cases}\frac{x^2}{x+5}=1\\\frac{x^2}{x+5}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-x-5=0\\x^2+11x+55=0\left(vn\right)\end{cases}}\Leftrightarrow x=\frac{1}{2}\pm\frac{\sqrt{21}}{2}\)  ( thỏa mãn) 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11ĐK:x\ne-5\)

\(\Leftrightarrow\frac{x^2\left(x+5\right)^2}{\left(x+5\right)^2}+\frac{25x^2}{\left(x+5\right)^2}=\frac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)

Khử mẫu ta đc : \(\Leftrightarrow x^2\left(x+5\right)^2+25x^2=11\left(x+5\right)^2\)

\(\Leftrightarrow x^4+10x^3+25x^2+25x^2=11x^2+110x+275\)

\(\Leftrightarrow x^4+10x^3+50x^2-11x^2-110x-275=0\)

\(\Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)

17 tháng 7 2020

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}+\frac{2b^2-2ca}{2b^2+c^2+a^2}+\frac{2c^2-2ab}{2c^2+a^2+b^2}\right)\)

\(\frac{1}{2}\left(\frac{2a^2-2bc}{2a^2+b^2+c^2}-1+\frac{2b^2-2ca}{2b^2+c^2+a^2}-1+\frac{2c^2-2ab}{2c^2+a^2+b^2}-1\right)+\frac{3}{2}\)

\(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\)

NHận xét:

\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\)\(=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Tương tự: \(\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}\le\text{​​}\text{​​}\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}\)

\(\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le\text{​​}\text{​​}\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\)

=> \(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)

=> \(-\frac{1}{2}\left(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right)+\frac{3}{2}\ge-\frac{1}{2}.3+\frac{3}{2}=0\)

=> \(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{2b^2+c^2+a^2}+\frac{c^2-ab}{2c^2+a^2+b^2}\ge0\)

Dấu "=" xảy ra <=> a = b = c 

17 tháng 7 2020

Huy làm có gì sai mọi người góp ý nha :3

a

Ta có 2 đường trung trực của các đoạn thẳng AM,AN cắt nhau tại I nên I là tâm đường tròn ngoại tiếp tam giác AMN

b

Hạ đường cao AK. Gọi L đối xứng với A qua K. Suy ra L cố định.Ta sẽ chứng minh tứ giác AMLN nội tiếp. Thật vậy !

Ta dễ có được đường tròn tâm I ngoại tiếp tam giác ALN 

Ta có:\(\widehat{AIN}=2\widehat{ALN};\widehat{AIN}=2\widehat{AMN}\Rightarrow\widehat{ALN}=\widehat{AMN}\) nên tứ giác AMLN nội tiếp khi đó đường tròn I luôn đi qua điểm L cố định

Hình tui đã vẽ trong TKHĐ nhé :))

21 tháng 7 2020

Mình làm ra vở cho bạn rồi nhé. Chữ mình hơi xấu, mong bạn thông cảm.

17 tháng 7 2020

\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

By Titu's Lemma we have:

\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:

\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)

But the last inequalities is true. ( QED )

16 tháng 7 2020

Trả lời:

\(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(M\inℤ\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\inℤ\)

\(\Rightarrow\frac{4}{\sqrt{x}-3}\inℤ\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\sqrt{x}-3\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(\sqrt{x}\)\(-1\left(L\right)\)\(1\)\(2\)\(4\)\(5\)\(7\)
\(x\)     \(/\)\(1\left(TM\right)\)\(4\left(TM\right)\)\(16\left(TM\right)\)\(25\left(TM\right)\)\(49\left(TM\right)\)

Vậy \(x\in\left\{1,4,16,25,49\right\}\) thì \(M\inℤ\)

16 tháng 7 2020

Đk: x \(\ge\)0; x \(\ne\)9

M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)

<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)         1            -1        2         -2          4
  x    16   4    25  1 49

Vậy ....