\(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
Cho \(A=\left(\frac{2\sqrt{x}}{x-\sqrt{x}}-\frac{2x-2}{x\sqrt{x-2x+\sqrt{x}}}\right):\left(\frac{1}{\sqrt{x}}\right)^2\)
a) Rút gọn A
B) Tìm x để A>0
mình cần gấp mong các bạn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(D=\sqrt{11-6\sqrt{2}}-3+\sqrt{2}\)
\(D=\sqrt{9-6\sqrt{2}+2}-3+\sqrt{2}\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(D=3-\sqrt{2}-3+\sqrt{2}\)
\(D=0\)
\(E=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(E=\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)
\(E=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(E=4+\sqrt{7}-\sqrt{7}\)
\(E=4\)
biểu thức B nhận giá trị b khi phương trình sau có nghiệm \(b=\frac{x+2y+1}{x^2+y^2+7}\)
\(\Leftrightarrow bx^2-x+by^2-2y+7y-1=0\left(2\right)\)
trong đó x là ẩn, y là tham số và b là tham số có điều kiện
nếu b=0 => x+2y+1=0
nếu b \(\ne\)0 để (2) có nghiệm x khi 1-4b(by2-2y+7b-1) >= 0 (3)
coi (3) là bất phương trình ẩn y. bất phương trình này xảy ra với mọi giá trị của y khi 16b2+4b2(-28b2+4b+1) >=0
<=> -28b2+4b+5 >=0 \(\Leftrightarrow-\frac{5}{14}\le b\le\frac{1}{2}\)
vậy minB=-5/14 khi \(x=-\frac{7}{5};y=-\frac{14}{5}\)
maxB=1/2 khi x=1;y=2
ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)
sử dụng bất đẳng thức Cauchy-Schwwarz ta có:
\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
A = \(\sqrt{2}+1-\sqrt{2}+1\)
A = 2
B = \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
B = \(2-\sqrt{3}+\sqrt{3}+2\)
B = 4
ĐK: \(x\ge-1\)
Bài này không có max nhé! Bạn kiểm tra lại đề ạ!
Bài 1:
Ta có: \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\)
\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)
\(\Leftrightarrow6\sqrt{x-2}=18\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^2=3^2\)
\(\Leftrightarrow x-2=9\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của PT \(S=\left\{11\right\}\)