x2-4√11x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài làm của một số bạn ở đây nhé :
Bài 42 Sgk tâp 1 - trang 96 - Toán lớp 9 | Học trực tuyến
Bây giờ đăng toàn mất link thôi , vào thống kê hỏi đáp của mình nhé : )
Ta có: x - y = 2 => x = 2 + y
A = x3 - y3 = (X - y)(x2 + xy + y2) = 2(x2 + xy + y2) = 2(x2 - 2xy + y2) + 6xy = 2(x - y)2 + 6xy = 8 + 6xy
A = 8 + 6y(2 + y) = 8 + 12y + 6y2 = 6(y2 + 2y + 1) + 2 = 6(y + 1)2 + 2 \(\ge\)2 \(\forall\)y
Dấu "=" xảy ra <=> y + 1 = 0 <=> y = -1 <=> x = 2 - 1 = 1
Vậy MinA = 2 khi x = 1 và y = -1
x - y = 2 => y = x - 2
Khi đó: B = 2x2 + y2 = 2x2 + (x- 2)2 = 2x2 + x2 - 4x + 4 = 3x2 - 4x + 4 = 3(x2 - 4/3x + 4/9) + 8/3 = 3(x - 2/3)2 + 8/3 \(\ge\)8/3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3 => y = 2/3 - 2 = -4/3
Vậy MinB = 8/3 khi x = 2/3 và y = -4/3
A = \(\frac{x+1}{x^2}=\frac{1}{x}+\frac{1}{x^2}\)
Đặt \(\frac{1}{x}=a\)=> A = a + a2 = (a2 + a + 1/4) - 1/4 = (a + 1/2)2 - 1/4 \(\ge\)-1/4 \(\forall\)x
Dấu "=" xảy rA <=> a + 1/2 = 0 <=> a = -1/2
<=> 1/x = -1/2 => x = -2
Vậy MinA = -1/4 khi x = -2
B = \(\frac{2x^2-6x+5}{x^2-2x+1}=\frac{\left(x^2-4x+4\right)+\left(x^2-2x+1\right)}{x^2-2x+1}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinB = 1 khi x = 2
Bài làm:
a) \(A=\sqrt{4}-2\sqrt{3}+\sqrt{7}-4\sqrt{3}\)
\(A=2+\sqrt{7}-6\sqrt{3}\)
b) \(B=\sqrt{3}+\sqrt{8}+\sqrt{3}-\sqrt{8}\)
\(B=2\sqrt{3}\)
Trả lời:
\(\sqrt{21-2\sqrt{108}}=\sqrt{21-2.6\sqrt{3}}\)
\(=\sqrt{21-12\sqrt{3}}\)
\(=\sqrt{12-12\sqrt{3}+9}\)
\(=\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(=2\sqrt{3}-3\)
\(\frac{\sqrt{y}}{x-\sqrt{xy}}+\frac{\sqrt{x}}{y-\sqrt{xy}}\)
\(=\frac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\frac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\frac{y}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}-\frac{x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)