Rút gọn các biểu thức sau:
a. $A = (\sqrt{12}-2\sqrt5)\sqrt3 + \sqrt{60}$.
b. $B = \dfrac{\sqrt{4x}}{x-3}.\sqrt{\dfrac{x^2-6x+9}x}$ với $0<x<3$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)
\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)
\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).
Dấu bằng xảy ra\(\Leftrightarrow x=y\).
Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).
Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)
Lúc đó:
\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)
\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)
Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)
Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)
\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)
\(\Leftrightarrow A=B\)
Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)
Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)
\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:
\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)
Chứng minh tương tự, ta được:
\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)
Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)
\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)
Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)
Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:
\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)
\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)
\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)
Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).
Bài 1 :
a, Thay m = 7 vào phương trình trên ta được :
\(x^2-2.8x+49-1=0\)
\(\Leftrightarrow x^2-16x+48=0\)
Ta có : \(\Delta=\left(-16\right)^2-4.48=64\)
\(\Rightarrow x_1=\frac{16-8}{2}=4;x_2=\frac{16+8}{2}=12\)
b, \(x^2-2\left(m+1\right)x+m^2-1=0\)
ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-1\right)=\left(2m+2\right)^2-4m^2+4\)
\(=4m^2+8m-4m^2+4=8m+4\)
Để phương trình có 2 nghiệm thì \(\Delta\ge0\)hay \(8m+4\ge0\Leftrightarrow m\ge-1\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2-1\end{cases}}\)
mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2=4m^2+8m+4-2m^2+2=2m^2+8m+6\)
\(M=2m^2+8m+6-m^2+1=m^2+8m+7\)
\(=m^2+8m+16-9=\left(m+4\right)^2-9\)
Do \(m\ge-1\)nên \(m+4\ge3\)
Suy ra \(M=\left(m+4\right)^2-9\ge9-9=0\)
Vậy GTNN M là 0 khi m = -1
Trả lời:
a. xác định a,b:
vì đồ thị hàm số y=ax+b // đường y=-1/2x+2020
=> a=-1/2
Đồ thị cắt trục hoành tại điểm có tọa độ(-5,0), thay vào ta có:
0= -1/2.-5 +b => b=-5/2
Đường thẳng d là: y=-1/2 x-5/2
Vì đường thẳng ( d ) : y = ax +b song song với đường thẳng
\(y=-\frac{1}{2}x+2020\Leftrightarrow\)\(\hept{\begin{cases}a=-\frac{1}{2}\\be2020\end{cases}}\)
khi đó phương trình đường thẳng ( d ) có dạng ( d ) :\(y=-\frac{1}{2}x+b,\)với \(be2020\)
Vì ( d ) cắt trục hoành tại điểm có hoành độ bằng -5 nên đường thẳng ( d ) đi qua điểm ( - 5 ; 0 )
thay tọa độ điểm ( - 5 ; 0 )và phương trình đường thẳng ( d ) ta có :
\(0=-\frac{1}{2}\times\left(-5\right)+b\)
\(\Leftrightarrow0=\frac{5}{2}+b\)
\(\Leftrightarrow b=-\frac{5}{2}\)thỏa mãn
Vậy \(a=-\frac{1}{2}\)và \(b=-\frac{5}{2}\)
bình chọn em với
Trả lời:
a. rút gọn biểu thức A.B:
A= 3\(\sqrt{7}\)-2\(\sqrt{7}\)+5\(\sqrt{7}\)-3=-3
B= \(\sqrt{x}\)-1 + \(\sqrt{x}\)=2\(\sqrt{x}\)-1
b. Tìm x để A=3B
ta có:
A=-3= 3 (2\(\sqrt{x}\)-1)
=> -3= 6\(\sqrt{x}\)-3
=> \(\sqrt{x}\)=0
Vậy x=0 thì A=3B
Trả lời:
Gọi x (đồng) là số tiền 1 ly kem ban đầu là : (đồng) (x>1500)
Giá của 4 ly kem đầu tiên là : 4.x (đồng)
Giá của 1 ly kem thứ 5 trở đi là : x-1500 (đồng)
Số tiền của 1 ly kem ban đầu là :
4.x+5.(x-1500)=154500
⇒4x+5x-7500=154500
⇒9x-7500=154500
⇒9x=1162000
⇒ x=162000/9 = 18000(đồng)
Vậy giá 1 ly kem ban đầu là : 18000 đ
Gọi giá của 1 ly kem ban đầu là x (đồng) (ĐK: x>0).
Giá của 1 ly kem (từ ly thứ 5) sau khi được giảm 1 500 đồng là: x - 1500 (đồng).
Vì nhóm của Thư mua 9 ly kem nên 4 ly kem đầu có giá x đồng/ly, 5 ly kem sau có giá x - 1500 đồng/ly, với số tiền 154 500 đồng nên ta có phương trình:
4x + 5(x – 1500) = 154 500
4x + 5x – 7500 = 154 500
9x = 162 000
x = 18 000 (tm)
Vậy giá của 1 ly kem ban đầu là 18 000 đồng.
a, Tính lượng nước \(\left(m^3\right)\)anh Minh đổ vào hố sau mỗi làn gánh ( ghi kết quả làm tròn đến 2 chữ số thập phân )
Biết trong quá trình gánh nước thì lượng nước bị hao hụt khoảng 10% nên
Công thức tính thể tích hình trụ là : \(V=ttR^2h\)
Thể tích của 2 thùng nước mỗi lần anh Minh gánh được là :
\(V_1=2ttR^2h=2tt\times0,0^2\times0,4=0,032tt\left(m^3\right)\)
Trong quá trình gánh , lượng nước hao hụt 10% nên lượng nước thực tế anh Minh đổ vào hồ sau mỗi lần gánh là :
\(V=0,032tt\times90\%=0,09\left(m^3\right)\)
b, Thể tích của hồ nước hình chữ nhật là :
\(V_0=2\times2\times1=4\left(m^3\right)\)
Số lần ít nhất anh Minh cần gánh để đổ đầy hồ nước là :
\(n=[\frac{V_0}{V}]+1=[\frac{4}{0,09}]+1=44+1=45\)Lần
Số tiền thưởng anh Thành nhận được là:
9800000−8000000=18000009800000−8000000=1800000 (đồng)
Tiền lời của số xe máy anh Thành bán vượt chỉ tiêu là:
1800000:8%=225000001800000:8%=22500000 (đồng)
Số xe máy bán vượt chỉ tiêu là:
22500000:2500000=922500000:2500000=9 (chiếc)
Số xe máy anh Thành bán được là:
31+9=4031+9=40 (chiếc)
Vậy tháng 5 anh Thành bán được 4040 chiếc xe máy.
Trả lời:
Gọi x (chiếc) là số xe anh Thành bán được trong tháng 5
Vì tháng 5 có 31 ngày nên số xe cần bán trong tháng 5 là 31 chiếc.
Số tiền anh Thành được thưởng trong tháng= 9800000-8000000= 1800000 đồng
Nhân viên được hưởng 8% trên tiền lới mỗi chiếc xe bán vượt chỉ tiêu, nên:
2500000.8% (x-31)=1800000
=>x-31=9
Số xe anh Thành bán được trong tháng 5 là: x=31+9= 40 chiếc
Đáp số: 40 chiếc
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)