\(\sqrt{2x}-5=\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ 2a + b + c = 0 <=> a + a + b + c = 0 <=> a + c = -(a + b)
Ta có: VT = 2a3 + b3 + c3 = (a3 + b3) + (a3 + c3)
= (a + b)(a2 - ab + b2) + (a + c)(a2 - ac + c2)
= (a + b)(a2 + 2ab + b2) - 3ab(a + b) + (a + c)(a2 + 2ac + c2) - 3ac(a + c)
= (a + b)3 - 3ab(a + b) + (a + c)3 - 3ac(a + c)
= (a + b)3 - (a + b)3 - 3ab(a + b) + 3ac(a + b)
= -3a(a + b)(b - c) = 3a(a + b)(c - b) = VP
=> VT = VP => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{a^4\left(b+1\right)\left(c+1\right)}+\frac{1}{b^4\left(c+1\right)\left(a+1\right)}+\frac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=1\end{cases}}\)và ta đưa BĐT cần chứng minh về dạng \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\frac{3}{4}\)
Áp dụng BĐT AM - GM, ta được:\(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y+1}{8}+\frac{z+1}{8}\ge\frac{3}{4}x\)
Tương tự: \(\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z+1}{8}+\frac{x+1}{8}\ge\frac{3}{4}y\); \(\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\frac{x+1}{8}+\frac{y+1}{8}\ge\frac{3}{4}z\)
Cộng theo vế của 3 BĐT trên, ta được: \(\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}+\)\(\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow\frac{x^3}{\left(y+1\right)\left(z+1\right)}+\frac{y^3}{\left(z+1\right)\left(x+1\right)}+\frac{z^3}{\left(x+1\right)\left(y+1\right)}\)\(\ge\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Đkxđ: x≥0, x khác 49
A= \(\frac{2\sqrt{x}}{\sqrt{x}-7}+\frac{x+21\sqrt{x}}{x-49}\)
A=\(\frac{2\sqrt{x}\left(\sqrt{x}+7\right)+x+21\sqrt{x}}{x-49}\)
=\(\frac{3x+35\sqrt{x}}{x-49}\)
B=\(\frac{\sqrt{x}}{x-5}\)
P=A/B=\(\frac{\sqrt{x}\left(3\sqrt{x}+35\right)\left(x-5\right)}{\sqrt{x}\left(x-49\right)}\)
=\(\frac{\left(3\sqrt{x}+35\right)\left(x-5\right)}{\left(x-49\right)}\)
P=1/3
<=>\(\frac{\left(3\sqrt{x}+35\right)\left(x-5\right)}{\left(x-49\right)}=\frac{1}{3}\)
<=>...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+\sqrt{9}}}}}\)(100 dấu căn)
=> \(VT< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+3}}}}=\sqrt{6+\sqrt{6+\sqrt{6+..\sqrt{6+\sqrt{9}}}}}\)(99 dấu căn)
=> \(VT< \sqrt{6+3}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
Ta có:\(VT=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)
\(=\sqrt[4]{25+20\sqrt{6}+24}+\sqrt[4]{25-20\sqrt{6}+24}\)
\(=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)
\(=2\sqrt{3}=VP\)
Vậy \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2+\frac{2x}{\sqrt{x^2+1}+x}-3=0\)
\(\Leftrightarrow4x^2+\frac{2x\left(\sqrt{x^2+1}-x\right)}{\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)}-3=0\)
\(\Leftrightarrow4x^2+\frac{2x\sqrt{x^2+1}-2x^2}{x^2+1-x^2}-3=0\)
\(\Leftrightarrow2x^2+2x\sqrt{x^2+1}-3=0\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}-2\right)\left(x+\sqrt{x^2+1}+2\right)=0\)
Đến đây tự làm , có ý hết rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Đa thức bậc nhất không phân tích được nhân tử :v
b)
Đặt \(\sqrt{x}=a;\sqrt{y}=b\) Khi đó:
\(x\sqrt{x}+y\sqrt{y}=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
c)
Tương tự câu b) thì ta sẽ có:
\(x\sqrt{x}-27=a^3-27=\left(a-3\right)\left(a^2+3a+9\right)\)
Bài làm:
a) \(9x-5=\left(3\sqrt{x}\right)^2-\sqrt{5}==\left(3\sqrt{x}-\sqrt{5}\right)\left(3\sqrt{x}+\sqrt{5}\right)\)
b) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
c) \(x\sqrt{x}-27=\left(\sqrt{x}\right)^3-3^3=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(\sqrt{x^2-4x+4}-x=-4\)
\(\Leftrightarrow\sqrt{x^2-4x+4}=x-4\)\(\left(ĐK:x\ge4\right)\)
\(\Leftrightarrow x^2-4x+4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4x+4=x^2-8x+16\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\left(L\right)\)
Vậy phương trình vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
tam giác BMH đồng dạng với tam giác MCI => \(\frac{BM}{MC}=\frac{MH}{CI}=\frac{BH}{MI}\left(1\right)\)
từ (1) => MB.MC=\(\frac{MH}{CI}\).MC2=\(\frac{MH}{CI}\left(MI^2+IC^2\right)\)=MH.IC+\(\frac{MI}{IC}\cdot MI^2\)
hay MB.MC=IA.IC+\(\frac{BH}{MI}\cdot MI^2\)\(=IA\cdot IA+HB\cdot MI=IA\cdot IC+HB\cdot HA\)
mình nghĩ đề như này mới đúng chứ :))
\(\sqrt{2x-5}=\sqrt{5}\)
<=> 2x - 5 = 5
<=> 2x = 5 + 5
<=> 2x = 10
<=> x = 5
\(\sqrt{2x}-5=\sqrt{5}\left(dk:x\ge0\right)\)
\(< =>\sqrt{2x}=\sqrt{5}\left(1+\sqrt{5}\right)\)
\(< =>\sqrt{x}=\frac{\sqrt{5}\left(1+\sqrt{5}\right)}{\sqrt{2}}\)
\(< =>x=\frac{5\left(1+\sqrt{5}\right)^2}{2}\)