K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

ĐK: \(x\ge-1\)

Bài này không có max nhé! Bạn kiểm tra lại đề ạ!

24 tháng 7 2020

đề hơi kì b ạ 

14 tháng 5 2023
23 tháng 7 2020

a, Vì a,b không âm:

\(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

Có \(a-b>0\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)>0\)

Mà \(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}>0\Leftrightarrow\sqrt{a}>\sqrt{b}\)

b, Tương tự phần a: 

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)>0\Leftrightarrow a-b>0\Leftrightarrow a>b\)

( đổi ngược dấu a,b lại giúp mình nhé.)

23 tháng 7 2020

Mới nghĩ ra câu a) 1 kiểu khác nhưng không biết đúng không  :> nó vẫn ra hq như nhau thôi 

Do a,b không âm và a < b nên b > 0 , suy ra :

\(\sqrt{a}+\sqrt{B}>0\)   ( 1 )

Mặt khác , ta có :

\(a-b=\left(\sqrt{a}\right)^2-\left(\sqrt{b^2}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)( 2 )

Vì a < b nên a - b < 0 , từ ( 2 ) suy ra :

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)< 0\)( 3 )

Từ (1) và (3) , suy ra :

\(\sqrt{a}-\sqrt{b}< 0\)hay \(\sqrt{a}< \sqrt{b}\)

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

23 tháng 7 2020

\(\hept{\begin{cases}x^3=2y+1\\y^3=2x+1\end{cases}\Rightarrow x^3-y^3+2\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0}\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2=0\end{cases}\Leftrightarrow x=y}\)

khi đó ta có hệ \(\hept{\begin{cases}x=y\\x^3-2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\\left(x^2+1\right)-2\left(x+1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\\left(x+1\right)\left(x^2-x-1\right)=0\end{cases}}}\)

th1: x=y=-1

th2: \(\hept{\begin{cases}x=y\\x^2-x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}}\)

vậy \(\orbr{\begin{cases}x=y=-1\\x=y=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

giải nè,ko hiểu vào hỏi mk nha^-^,từ phương trình ban đầu ta chuyển vế,được

\(\hept{\begin{cases}x^3-2y-1=0\\y^3-2x-1=0\end{cases}}\) =>ta dùng" phương pháp cộng đại số"lấy phương trình trên trừ đi phương trình dưới!!!!!                                            nghe vô lý nhưng thuyết phục,hehe=> x- y- 2y + 2x = 0

               triển đẳng thức   => (x - y)(x+ xy + y2) -2(y - x) =0    =>(x - y)(x2 + xy + y)+ 2( x - y) = 0 

                     => (x - y)(x+ xy + y+ 2) =0 (vì x2 + yluôn > 2xy theo bất đẳng thức cô si,nên suy ra  x+ xy +y2 +2 luôn lớn hơn 0)

                     => phương trình trên sẽ có nghiệm x - y =0; => x = y                 

thay x = y vào hệ phương trình bên trên...ta có  :y= 2y +1  => y3 + y2 = y2 +2y +1

                                                                           => y2( y + 1) = ( y + 1)2  => y2 = y + 1 => y2 - y -1=0,giải denta,ta được 2 nghiệm y1;y2

                  y1  = x\(\frac{1+\sqrt{5}}{2}\)    Và  y2 = x=\(\frac{1-\sqrt{5}}{2}\)

                                 Vạy hệ phương trình trên có nghiệm...bla...bla..oki..vậy nhá,sai khúc nào mong bạn bỏ qua nha!

                                                                          

                                           
 

23 tháng 7 2020

\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y >  0)

\(=\frac{3}{x-y}\)

\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)

\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)

23 tháng 7 2020

câu cuối điều kiện là a>b

\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)

23 tháng 7 2020

Cộng 2 phương trình lại 
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)

23 tháng 7 2020

điều kiện: 0=<x =< 32

hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)

theo bất đẳng thức Bunhiacopsky ta có:

\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)

\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)

\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)

mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)

đẳng thức xảy ra khi x=16 và y=3 (tm)

23 tháng 7 2020

Ta có :\(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)

=> \(\sqrt{17}+\sqrt{26}>9\)

23 tháng 7 2020

Giúp mình câu này vs ạ

\(\sqrt{35}-3và3\)