K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

\(ĐKXĐ:-1\le a\le1\)

Đặt \(A=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)

\(\Leftrightarrow A^2=a+2\sqrt{a-1}+a-2\sqrt{a-1}+2\sqrt{\left(a+2\sqrt{a-1}\right)\left(a-2\sqrt{a-1}\right)}\)

\(\Leftrightarrow A^2=2a+2\sqrt{a^2-4\left(a-1\right)}\)

\(\Leftrightarrow A^2=2a+2\sqrt{a^2-4a+4}\)

\(\Leftrightarrow A^2=2a+2\sqrt{\left(a-2\right)^2}\)

\(\Leftrightarrow A^2=2a+2\left(a-2\right)\)

\(\Leftrightarrow A^2=2a+2a-4\)

\(\Leftrightarrow A^2=4a-4\)

\(\Leftrightarrow A=2\sqrt{a-1}\)

1 tháng 8 2020

\(\frac{\sqrt{-3x}}{x^2-1}\)

Điều kiện để căn thức có nghĩa là :

\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)

1 tháng 8 2020

\(\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\)

\(=\left|a+3\right|+\left|a-3\right|\)

Vì \(-3\le a\le3\)\(\Rightarrow\left|a+3\right|=a+3\)và \(\left|a-3\right|=-\left(a-3\right)=-a+3\)

\(\Rightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\left(a+3\right)+\left(-a+3\right)=6\)

1 tháng 8 2020

                               Bài làm :

a) Gọi S1 ; S2 lần lượt là độ dài nửa quãng đường đầu và nửa quãng đường còn lại .

\(\Rightarrow S_1=S_2=\frac{S}{2}\)

Thời gian Nobita đi hết nửa quãng đường đầu là :

\(t_1=\frac{S_1}{v_1}=\frac{S}{\frac{2}{v_1}}=\frac{S}{2v_1}=\frac{S}{2.27}=\frac{S}{54}\)

Thời gian Nobita đi hết nửa quãng đường còn lại là :

\(t_2=\frac{S_2}{v_2}=\frac{S}{\frac{2}{v_2}}=\frac{S}{2v_2}\)

Mà vận tốc trung bình của Nobita là 18km/h nên :

\(v_{TB}=\frac{S}{\frac{S}{54}+\frac{S}{2v_2}}=18\)

\(\Rightarrow v_2=13,5\left(km\text{/}h\right)\)

b) Để đến trường đúng giờ thì Nobita phải đi trong thời gian là :

\(\text{7 giờ - 6 giờ 55 phút = 5 phút .}\)

Trên thực tế thì  Nobita đi trong thời gian là :

\(t=\frac{S}{v_{TB}}=\frac{3}{18}=\frac{1}{6}\left(h\right)=10\text{ phút}\)

=> Nobita không đến trường kịp giờ và muộn mất :

\(\text{10 phút - 5 phút = 5 phút}\)

c)Đổi 340m/s = 1224 km/h .

Vậy thời gian Nobita đi đến trường bằng vận tốc âm thanh là :

\(T=\frac{S}{V_{\text{âm}}}=\frac{3}{1224}=\frac{1}{408}\left(h\right)\approx0,15\left(\text{ phút}\right)\)

Vậy Nobita kịp giờ học .

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1 tháng 8 2020

\(\hept{\begin{cases}2\sqrt{2x+y}=3-2x-y\left(1\right)\\x^2-2xy-y^2=3\left(2\right)\end{cases}}\)

\(ĐK:2x+y\ge0\)

\(\left(1\right)\Leftrightarrow\left(2x+y\right)+2\sqrt{2x+y}+1=4\)

\(\Leftrightarrow\left(\sqrt{2x+y}+1\right)^2=4\Leftrightarrow\sqrt{2x+y}+1=2\)

\(\Leftrightarrow\sqrt{2x+y}=1\Leftrightarrow2x+y=1\Leftrightarrow y=1-2x\)

Thay y = 1 - 2x vào (2), ta được: \(x^2-2x\left(1-2x\right)-\left(1-2x\right)^2=3\)

\(\Leftrightarrow x^2-2x+4x^2-4x^2+4x-1=3\)

\(\Leftrightarrow x^2+2x-4=0\Leftrightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)

+) Nếu \(x=-1+\sqrt{5}\)thì \(y=3-2\sqrt{5}\)(tm)

+) Nếu \(x=-1-\sqrt{5}\)thì \(y=3+2\sqrt{5}\)(tm)

Vậy hệ có 2 nghiệm \(\left(x;y\right)\in\left\{\left(-1+\sqrt{5};3-2\sqrt{5}\right);\left(-1-\sqrt{5};3+2\sqrt{5}\right)\right\}\)

1 tháng 8 2020

bn Kiệt (inequalities) đúng

The Tempest

31 tháng 7 2020

Xài BĐT Bunhiacopski :

\(\left(b+c+c+a+a+b\right)\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

\(\ge\left(a+b+c\right)^2\Rightarrow P\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

Sử dụng Bunhiacopski đỡ phải chứng minh lại Cauchy Schwarz

31 tháng 7 2020

Cậu hình như thiếu đề (chỗ Vp của BPT)

1 tháng 8 2020

đề đâu bạn ? sao ko ghi đề mà đăng bài lên thế :))

Bài làm

\(\sqrt{-6x}=\sqrt{5}\)

\(\Leftrightarrow\left(\sqrt{-6x}\right)^2=\left(\sqrt{5}\right)^2\)

\(\Leftrightarrow-6x=5\)

\(\Leftrightarrow x=-\frac{5}{6}\)

Vậy \(x=-\frac{5}{6}\)

31 tháng 7 2020

Bài làm:

Ta có: \(\sqrt{-6x}=\sqrt{5}\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

31 tháng 7 2020

\(\sqrt{x^2+2x+4}=\sqrt{\left(x+2\right)^2}=x+2\)

31 tháng 7 2020

Hải Ngọc  ơi  bạn tính sai rồi
\(\sqrt{x^2+2x+4}=\sqrt{\left(x^2+2x+1\right)+3}\)

                                 \(=\sqrt{\left(x+1\right)^2+3}\)

Học tốt 

31 tháng 7 2020

Trả lời:

\(\sqrt{x^2-25}=\sqrt{\left(x-5\right).\left(x+5\right)}\)

                        \(=\sqrt{x-5}.\sqrt{x+5}\)

Học tốt