K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

\(\sqrt{x^2+2x+4}=\sqrt{\left(x+2\right)^2}=x+2\)

31 tháng 7 2020

Hải Ngọc  ơi  bạn tính sai rồi
\(\sqrt{x^2+2x+4}=\sqrt{\left(x^2+2x+1\right)+3}\)

                                 \(=\sqrt{\left(x+1\right)^2+3}\)

Học tốt 

31 tháng 7 2020

Trả lời:

\(\sqrt{x^2-25}=\sqrt{\left(x-5\right).\left(x+5\right)}\)

                        \(=\sqrt{x-5}.\sqrt{x+5}\)

Học tốt

31 tháng 7 2020

ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3

theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2

đặt 9n+11=a(a+1) với a là số nguyên dương

9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1

<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45

vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau

th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)

từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)

th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)

từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)

th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)

từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n

vậy n=1

1 tháng 8 2020

Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)

Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)

Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)

Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1 

31 tháng 7 2020

Bài làm:

a) \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6+2\sqrt{5}\right)^3}=0\)

b) \(\frac{a^3-2\sqrt{2}}{a-\sqrt{2}}=\frac{\left(a-\sqrt{2}\right)\left(a^2+a\sqrt{2}+2\right)}{a-\sqrt{2}}=a^2+a\sqrt{2}+2\)

1 tháng 8 2020

câu a chắc đề bị lỗi 

\(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(6+2\sqrt{5}\right)^2\left(6+2\sqrt{5}\right)}-\sqrt{\left(6-2\sqrt{5}\right)^2\left(6-2\sqrt{5}\right)}\)

\(=\left(6+2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}-\left(6-2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(6+2\sqrt{5}\right)\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}-\left(6-2\sqrt{5}\right)\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}\)

\(=\left(\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2\right)\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}-\left(\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2\right)\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}\)

\(=\left(\sqrt{5}+\sqrt{1}\right)^2.|\sqrt{5}+\sqrt{1}|-\left(\sqrt{5}-\sqrt{1}\right)^2.|\sqrt{5}-\sqrt{1}|\)

\(=\left(\sqrt{5}+\sqrt{1}\right)^2.\left(\sqrt{5}+\sqrt{1}\right)-\left(\sqrt{5}-\sqrt{1}\right)^2.\left(\sqrt{5}-\sqrt{1}\right)\)

\(=\left(\sqrt{5}+\sqrt{1}\right)^3-\left(\sqrt{5}-\sqrt{1}\right)^3\)

31 tháng 7 2020

\(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)

\(=\sqrt{\left(6+2\sqrt{5}\right)^2.\left(6+2\sqrt{5}\right)}+\sqrt{\left(6-2\sqrt{5}\right)^2.\left(6-2\sqrt{5}\right)}\)

\(=\left(6+2\sqrt{5}\right).\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}+\left(6-2\sqrt{5}\right).\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}\)

\(=\left(\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2\right).\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}+\left(\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2\right).\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}\)

\(=\left(\sqrt{5}+\sqrt{1}\right)^2.\left(\sqrt{5}+\sqrt{1}\right)+\left(\sqrt{5}-\sqrt{1}\right)^2.\left(\sqrt{5}-\sqrt{1}\right)\)

\(=\left(\sqrt{5}+\sqrt{1}\right)^3+\left(\sqrt{5}-\sqrt{1}\right)^3\)

bạn có thể phân tích tiếp bằng hđt

3 tháng 8 2020

\(\hept{\begin{cases}43x+2y=4310\\x-y+\sqrt{x}=105\end{cases}}\left(đk:x\ge0\right)\)

\(< =>\hept{\begin{cases}43x+2y=4310\\2x-2y+2\sqrt{x}=210\end{cases}}\)

Cộng 2 pt lại ta được : \(43x+2y+2x-2y+2\sqrt{x}=4310+210\)

\(< =>45x+2\sqrt{x}=4520\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)khi đó 

\(45t^2+2t=4520< =>45t^2+2t-4520=0\)

\(< =>\orbr{\begin{cases}x=10\\x=-\frac{452}{45}\end{cases}}\)

Với \(x=10\)thì \(43x+2y=4310\)

\(< =>430+2y=4310< =>2x=4310-430\)

\(< =>2y=3880< =>y=1940\)

Tương tự với \(x=-\frac{452}{45}\)thì ta có \(y=\frac{42043}{15}\)

Vậy hệ phương trình trên có tập nghiệm là \(\left\{10;1940\right\}\left\{\frac{-452}{45};\frac{42043}{15}\right\}\)

3 tháng 8 2020

mình nhầm rồi sửa từ dòng 7 @@ lú quá 

\(< =>\hept{\begin{cases}t=10\\t=-\frac{452}{45}\left(loại\right)\end{cases}}\)

Với \(t=10< =>x=100\)

\(< =>43.100+2y=4310\)

\(< =>2y=10< =>y=5\)

Vậy \(\hept{\begin{cases}x=100\\y=5\end{cases}}\)

31 tháng 7 2020

Bg

Ta có: n2 + 2n + 6 \(⋮\)n + 4     (n thuộc \(ℤ\))

=> 4n + 6 \(⋮\)n + 4

=> 4.(n + 4) - 10 \(⋮\)n + 4

Mà 4.(n + 4) \(⋮\)n + 4

=> 10 \(⋮\)n + 4

=> n + 4 thuộc Ư(10)

Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}

Lập bảng: 

n + 4 =1-12-25-510-10
n =

-3

-5-2-61-96-14

Vậy n = {-3; -5; ; -2; -6; 1; -9; 6; -14}

31 tháng 7 2020

Ta có n2 + 2n + 6 = n2 + 8n + 16 - 6n - 24 + 14

                             = (n + 4)2 - (n + 4) + 14

                             = (n + 4)(n + 4 - 1) + 14

Vì (n + 4)(n + 4 - 1) \(⋮\)n + 4 

=> 14 \(⋮n+4\Rightarrow n+4\inƯ\left(14\right)\)(Vì n nguyên)

=> \(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

=> \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)

\(⋮\)

2 tháng 8 2020

  Cau 1:

Cau 2 : Chịu